Cargando…
Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh
Atmospheric particle pollution causes acute and chronic health effects. Predicting the concentrations of PM(2.5) and PM(10), therefore, is a prerequisite to avoid the consequences and mitigate the complications. This research utilized the machine learning (ML) models such as linear-support vector ma...
Autores principales: | Shahriar, Shihab Ahmad, Kayes, Imrul, Hasan, Kamrul, Salam, Mohammed Abdus, Chowdhury, Shawan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371793/ https://www.ncbi.nlm.nih.gov/pubmed/32837617 http://dx.doi.org/10.1007/s11869-020-00878-8 |
Ejemplares similares
-
Assessment of remote sensing-based indices for drought monitoring in the north-western region of Bangladesh
por: Das, Ashim C., et al.
Publicado: (2023) -
Plastic Burning Impacts on Atmospheric Fine Particulate
Matter at Urban and Rural Sites in the USA and Bangladesh
por: Islam, Md. Robiul, et al.
Publicado: (2022) -
Water pollution in Bangladesh and its impact on public health
por: Hasan, Md. Khalid, et al.
Publicado: (2019) -
Molecular Property Prediction of Modified Gedunin Using Machine Learning
por: Aly, Mohammed, et al.
Publicado: (2023) -
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics
por: Kayes, Md Imrul, et al.
Publicado: (2014)