Cargando…

Cryptochromes Suppress HIF1α in Muscles

Muscles preferentially utilize glycolytic or oxidative metabolism depending on the intensity of physical activity. Transcripts required for carbohydrate and lipid metabolism undergo circadian oscillations of expression in muscles, and both exercise capacity and the metabolic response to exercise are...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaughan, Megan E., Wallace, Martina, Handzlik, Michal K., Chan, Alanna B., Metallo, Christian M., Lamia, Katja A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371909/
https://www.ncbi.nlm.nih.gov/pubmed/32683313
http://dx.doi.org/10.1016/j.isci.2020.101338
_version_ 1783561202645860352
author Vaughan, Megan E.
Wallace, Martina
Handzlik, Michal K.
Chan, Alanna B.
Metallo, Christian M.
Lamia, Katja A.
author_facet Vaughan, Megan E.
Wallace, Martina
Handzlik, Michal K.
Chan, Alanna B.
Metallo, Christian M.
Lamia, Katja A.
author_sort Vaughan, Megan E.
collection PubMed
description Muscles preferentially utilize glycolytic or oxidative metabolism depending on the intensity of physical activity. Transcripts required for carbohydrate and lipid metabolism undergo circadian oscillations of expression in muscles, and both exercise capacity and the metabolic response to exercise are influenced by time of day. The circadian repressors CRY1 and CRY2 repress peroxisome proliferator-activated receptor delta (PPARδ), a major driver of oxidative metabolism and exercise endurance. CRY-deficient mice exhibit enhanced PPARδ activation and greater maximum speed when running on a treadmill but no increase in exercise endurance. Here we demonstrate that CRYs limit hypoxia-responsive transcription via repression of HIF1α-BMAL1 heterodimers. Furthermore, CRY2 appeared to be more effective than CRY1 in the reduction of HIF1α protein steady-state levels in primary myotubes and quadriceps in vivo. Finally, CRY-deficient myotubes exhibit metabolic alterations consistent with cryptochrome-dependent suppression of HIF1α, which likely contributes to circadian modulation of muscle metabolism.
format Online
Article
Text
id pubmed-7371909
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-73719092020-07-23 Cryptochromes Suppress HIF1α in Muscles Vaughan, Megan E. Wallace, Martina Handzlik, Michal K. Chan, Alanna B. Metallo, Christian M. Lamia, Katja A. iScience Article Muscles preferentially utilize glycolytic or oxidative metabolism depending on the intensity of physical activity. Transcripts required for carbohydrate and lipid metabolism undergo circadian oscillations of expression in muscles, and both exercise capacity and the metabolic response to exercise are influenced by time of day. The circadian repressors CRY1 and CRY2 repress peroxisome proliferator-activated receptor delta (PPARδ), a major driver of oxidative metabolism and exercise endurance. CRY-deficient mice exhibit enhanced PPARδ activation and greater maximum speed when running on a treadmill but no increase in exercise endurance. Here we demonstrate that CRYs limit hypoxia-responsive transcription via repression of HIF1α-BMAL1 heterodimers. Furthermore, CRY2 appeared to be more effective than CRY1 in the reduction of HIF1α protein steady-state levels in primary myotubes and quadriceps in vivo. Finally, CRY-deficient myotubes exhibit metabolic alterations consistent with cryptochrome-dependent suppression of HIF1α, which likely contributes to circadian modulation of muscle metabolism. Elsevier 2020-07-03 /pmc/articles/PMC7371909/ /pubmed/32683313 http://dx.doi.org/10.1016/j.isci.2020.101338 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Vaughan, Megan E.
Wallace, Martina
Handzlik, Michal K.
Chan, Alanna B.
Metallo, Christian M.
Lamia, Katja A.
Cryptochromes Suppress HIF1α in Muscles
title Cryptochromes Suppress HIF1α in Muscles
title_full Cryptochromes Suppress HIF1α in Muscles
title_fullStr Cryptochromes Suppress HIF1α in Muscles
title_full_unstemmed Cryptochromes Suppress HIF1α in Muscles
title_short Cryptochromes Suppress HIF1α in Muscles
title_sort cryptochromes suppress hif1α in muscles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371909/
https://www.ncbi.nlm.nih.gov/pubmed/32683313
http://dx.doi.org/10.1016/j.isci.2020.101338
work_keys_str_mv AT vaughanmegane cryptochromessuppresshif1ainmuscles
AT wallacemartina cryptochromessuppresshif1ainmuscles
AT handzlikmichalk cryptochromessuppresshif1ainmuscles
AT chanalannab cryptochromessuppresshif1ainmuscles
AT metallochristianm cryptochromessuppresshif1ainmuscles
AT lamiakatjaa cryptochromessuppresshif1ainmuscles