Cargando…
An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from s...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372107/ https://www.ncbi.nlm.nih.gov/pubmed/32760401 http://dx.doi.org/10.3389/fimmu.2020.01470 |
_version_ | 1783561243305443328 |
---|---|
author | Estévez, Olivia Anibarro, Luis Garet, Elina Pallares, Ángeles Barcia, Laura Calviño, Laura Maueia, Cremildo Mussá, Tufária Fdez-Riverola, Florentino Glez-Peña, Daniel Reboiro-Jato, Miguel López-Fernández, Hugo Fonseca, Nuno A. Reljic, Rajko González-Fernández, África |
author_facet | Estévez, Olivia Anibarro, Luis Garet, Elina Pallares, Ángeles Barcia, Laura Calviño, Laura Maueia, Cremildo Mussá, Tufária Fdez-Riverola, Florentino Glez-Peña, Daniel Reboiro-Jato, Miguel López-Fernández, Hugo Fonseca, Nuno A. Reljic, Rajko González-Fernández, África |
author_sort | Estévez, Olivia |
collection | PubMed |
description | A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas. |
format | Online Article Text |
id | pubmed-7372107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73721072020-08-04 An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile Estévez, Olivia Anibarro, Luis Garet, Elina Pallares, Ángeles Barcia, Laura Calviño, Laura Maueia, Cremildo Mussá, Tufária Fdez-Riverola, Florentino Glez-Peña, Daniel Reboiro-Jato, Miguel López-Fernández, Hugo Fonseca, Nuno A. Reljic, Rajko González-Fernández, África Front Immunol Immunology A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas. Frontiers Media S.A. 2020-07-14 /pmc/articles/PMC7372107/ /pubmed/32760401 http://dx.doi.org/10.3389/fimmu.2020.01470 Text en Copyright © 2020 Estévez, Anibarro, Garet, Pallares, Barcia, Calviño, Maueia, Mussá, Fdez-Riverola, Glez-Peña, Reboiro-Jato, López-Fernández, Fonseca, Reljic and González-Fernández. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Estévez, Olivia Anibarro, Luis Garet, Elina Pallares, Ángeles Barcia, Laura Calviño, Laura Maueia, Cremildo Mussá, Tufária Fdez-Riverola, Florentino Glez-Peña, Daniel Reboiro-Jato, Miguel López-Fernández, Hugo Fonseca, Nuno A. Reljic, Rajko González-Fernández, África An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile |
title | An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile |
title_full | An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile |
title_fullStr | An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile |
title_full_unstemmed | An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile |
title_short | An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile |
title_sort | rna-seq based machine learning approach identifies latent tuberculosis patients with an active tuberculosis profile |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372107/ https://www.ncbi.nlm.nih.gov/pubmed/32760401 http://dx.doi.org/10.3389/fimmu.2020.01470 |
work_keys_str_mv | AT estevezolivia anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT anibarroluis anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT garetelina anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT pallaresangeles anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT barcialaura anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT calvinolaura anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT maueiacremildo anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT mussatufaria anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT fdezriverolaflorentino anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT glezpenadaniel anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT reboirojatomiguel anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT lopezfernandezhugo anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT fonsecanunoa anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT reljicrajko anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT gonzalezfernandezafrica anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT estevezolivia rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT anibarroluis rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT garetelina rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT pallaresangeles rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT barcialaura rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT calvinolaura rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT maueiacremildo rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT mussatufaria rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT fdezriverolaflorentino rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT glezpenadaniel rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT reboirojatomiguel rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT lopezfernandezhugo rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT fonsecanunoa rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT reljicrajko rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile AT gonzalezfernandezafrica rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile |