Cargando…

An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile

A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from s...

Descripción completa

Detalles Bibliográficos
Autores principales: Estévez, Olivia, Anibarro, Luis, Garet, Elina, Pallares, Ángeles, Barcia, Laura, Calviño, Laura, Maueia, Cremildo, Mussá, Tufária, Fdez-Riverola, Florentino, Glez-Peña, Daniel, Reboiro-Jato, Miguel, López-Fernández, Hugo, Fonseca, Nuno A., Reljic, Rajko, González-Fernández, África
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372107/
https://www.ncbi.nlm.nih.gov/pubmed/32760401
http://dx.doi.org/10.3389/fimmu.2020.01470
_version_ 1783561243305443328
author Estévez, Olivia
Anibarro, Luis
Garet, Elina
Pallares, Ángeles
Barcia, Laura
Calviño, Laura
Maueia, Cremildo
Mussá, Tufária
Fdez-Riverola, Florentino
Glez-Peña, Daniel
Reboiro-Jato, Miguel
López-Fernández, Hugo
Fonseca, Nuno A.
Reljic, Rajko
González-Fernández, África
author_facet Estévez, Olivia
Anibarro, Luis
Garet, Elina
Pallares, Ángeles
Barcia, Laura
Calviño, Laura
Maueia, Cremildo
Mussá, Tufária
Fdez-Riverola, Florentino
Glez-Peña, Daniel
Reboiro-Jato, Miguel
López-Fernández, Hugo
Fonseca, Nuno A.
Reljic, Rajko
González-Fernández, África
author_sort Estévez, Olivia
collection PubMed
description A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas.
format Online
Article
Text
id pubmed-7372107
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-73721072020-08-04 An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile Estévez, Olivia Anibarro, Luis Garet, Elina Pallares, Ángeles Barcia, Laura Calviño, Laura Maueia, Cremildo Mussá, Tufária Fdez-Riverola, Florentino Glez-Peña, Daniel Reboiro-Jato, Miguel López-Fernández, Hugo Fonseca, Nuno A. Reljic, Rajko González-Fernández, África Front Immunol Immunology A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas. Frontiers Media S.A. 2020-07-14 /pmc/articles/PMC7372107/ /pubmed/32760401 http://dx.doi.org/10.3389/fimmu.2020.01470 Text en Copyright © 2020 Estévez, Anibarro, Garet, Pallares, Barcia, Calviño, Maueia, Mussá, Fdez-Riverola, Glez-Peña, Reboiro-Jato, López-Fernández, Fonseca, Reljic and González-Fernández. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Estévez, Olivia
Anibarro, Luis
Garet, Elina
Pallares, Ángeles
Barcia, Laura
Calviño, Laura
Maueia, Cremildo
Mussá, Tufária
Fdez-Riverola, Florentino
Glez-Peña, Daniel
Reboiro-Jato, Miguel
López-Fernández, Hugo
Fonseca, Nuno A.
Reljic, Rajko
González-Fernández, África
An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
title An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
title_full An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
title_fullStr An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
title_full_unstemmed An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
title_short An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile
title_sort rna-seq based machine learning approach identifies latent tuberculosis patients with an active tuberculosis profile
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372107/
https://www.ncbi.nlm.nih.gov/pubmed/32760401
http://dx.doi.org/10.3389/fimmu.2020.01470
work_keys_str_mv AT estevezolivia anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT anibarroluis anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT garetelina anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT pallaresangeles anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT barcialaura anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT calvinolaura anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT maueiacremildo anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT mussatufaria anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT fdezriverolaflorentino anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT glezpenadaniel anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT reboirojatomiguel anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT lopezfernandezhugo anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT fonsecanunoa anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT reljicrajko anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT gonzalezfernandezafrica anrnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT estevezolivia rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT anibarroluis rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT garetelina rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT pallaresangeles rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT barcialaura rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT calvinolaura rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT maueiacremildo rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT mussatufaria rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT fdezriverolaflorentino rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT glezpenadaniel rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT reboirojatomiguel rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT lopezfernandezhugo rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT fonsecanunoa rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT reljicrajko rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile
AT gonzalezfernandezafrica rnaseqbasedmachinelearningapproachidentifieslatenttuberculosispatientswithanactivetuberculosisprofile