Cargando…

ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19

BACKGROUND: Pandemic COVID-19 by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) infection is facilitated by the ACE2 receptor and protease TMPRSS2. Modestly sized case series have described clinical factors associated with COVID-19, while ACE2 and TMPRSS2 expression analyses hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Riyue, Hernandez, Kyle, Huang, Lei, Luke, Jason John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372174/
https://www.ncbi.nlm.nih.gov/pubmed/32675312
http://dx.doi.org/10.1136/jitc-2020-001020
_version_ 1783561257185443840
author Bao, Riyue
Hernandez, Kyle
Huang, Lei
Luke, Jason John
author_facet Bao, Riyue
Hernandez, Kyle
Huang, Lei
Luke, Jason John
author_sort Bao, Riyue
collection PubMed
description BACKGROUND: Pandemic COVID-19 by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) infection is facilitated by the ACE2 receptor and protease TMPRSS2. Modestly sized case series have described clinical factors associated with COVID-19, while ACE2 and TMPRSS2 expression analyses have been described in some cell types. Patients with cancer may have worse outcomes to COVID-19. METHODS: We performed an integrated study of ACE2 and TMPRSS2 gene expression across and within organ systems, by normal versus tumor, across several existing databases (The Cancer Genome Atlas, Census of Immune Single Cell Expression Atlas, The Human Cell Landscape, and more). We correlated gene expression with clinical factors (including but not limited to age, gender, race, body mass index, and smoking history), HLA genotype, immune gene expression patterns, cell subsets, and single-cell sequencing as well as commensal microbiome. RESULTS: Matched normal tissues generally display higher ACE2 and TMPRSS2 expression compared with cancer, with normal and tumor from digestive organs expressing the highest levels. No clinical factors were consistently identified to be significantly associated with gene expression levels though outlier organ systems were observed for some factors. Similarly, no HLA genotypes were consistently associated with gene expression levels. Strong correlations were observed between ACE2 expression levels and multiple immune gene signatures including interferon-stimulated genes and the T cell-inflamed phenotype as well as inverse associations with angiogenesis and transforming growth factor-β signatures. ACE2 positively correlated with macrophage subsets across tumor types. TMPRSS2 was less associated with immune gene expression but was strongly associated with epithelial cell abundance. Single-cell sequencing analysis across nine independent studies demonstrated little to no ACE2 or TMPRSS2 expression in lymphocytes or macrophages. ACE2 and TMPRSS2 gene expression associated with commensal microbiota in matched normal tissues particularly from colorectal cancers, with distinct bacterial populations showing strong associations. CONCLUSIONS: We performed a large-scale integration of ACE2 and TMPRSS2 gene expression across clinical, genetic, and microbiome domains. We identify novel associations with the microbiota and confirm host immunity associations with gene expression. We suggest caution in interpretation regarding genetic associations with ACE2 expression suggested from smaller case series.
format Online
Article
Text
id pubmed-7372174
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-73721742020-07-21 ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19 Bao, Riyue Hernandez, Kyle Huang, Lei Luke, Jason John J Immunother Cancer Clinical/Translational Cancer Immunotherapy BACKGROUND: Pandemic COVID-19 by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) infection is facilitated by the ACE2 receptor and protease TMPRSS2. Modestly sized case series have described clinical factors associated with COVID-19, while ACE2 and TMPRSS2 expression analyses have been described in some cell types. Patients with cancer may have worse outcomes to COVID-19. METHODS: We performed an integrated study of ACE2 and TMPRSS2 gene expression across and within organ systems, by normal versus tumor, across several existing databases (The Cancer Genome Atlas, Census of Immune Single Cell Expression Atlas, The Human Cell Landscape, and more). We correlated gene expression with clinical factors (including but not limited to age, gender, race, body mass index, and smoking history), HLA genotype, immune gene expression patterns, cell subsets, and single-cell sequencing as well as commensal microbiome. RESULTS: Matched normal tissues generally display higher ACE2 and TMPRSS2 expression compared with cancer, with normal and tumor from digestive organs expressing the highest levels. No clinical factors were consistently identified to be significantly associated with gene expression levels though outlier organ systems were observed for some factors. Similarly, no HLA genotypes were consistently associated with gene expression levels. Strong correlations were observed between ACE2 expression levels and multiple immune gene signatures including interferon-stimulated genes and the T cell-inflamed phenotype as well as inverse associations with angiogenesis and transforming growth factor-β signatures. ACE2 positively correlated with macrophage subsets across tumor types. TMPRSS2 was less associated with immune gene expression but was strongly associated with epithelial cell abundance. Single-cell sequencing analysis across nine independent studies demonstrated little to no ACE2 or TMPRSS2 expression in lymphocytes or macrophages. ACE2 and TMPRSS2 gene expression associated with commensal microbiota in matched normal tissues particularly from colorectal cancers, with distinct bacterial populations showing strong associations. CONCLUSIONS: We performed a large-scale integration of ACE2 and TMPRSS2 gene expression across clinical, genetic, and microbiome domains. We identify novel associations with the microbiota and confirm host immunity associations with gene expression. We suggest caution in interpretation regarding genetic associations with ACE2 expression suggested from smaller case series. BMJ Publishing Group 2020-07-15 /pmc/articles/PMC7372174/ /pubmed/32675312 http://dx.doi.org/10.1136/jitc-2020-001020 Text en © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Clinical/Translational Cancer Immunotherapy
Bao, Riyue
Hernandez, Kyle
Huang, Lei
Luke, Jason John
ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19
title ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19
title_full ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19
title_fullStr ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19
title_full_unstemmed ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19
title_short ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19
title_sort ace2 and tmprss2 expression by clinical, hla, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for sars-cov-2 covid-19
topic Clinical/Translational Cancer Immunotherapy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372174/
https://www.ncbi.nlm.nih.gov/pubmed/32675312
http://dx.doi.org/10.1136/jitc-2020-001020
work_keys_str_mv AT baoriyue ace2andtmprss2expressionbyclinicalhlaimmuneandmicrobialcorrelatesacross34humancancersandmatchednormaltissuesimplicationsforsarscov2covid19
AT hernandezkyle ace2andtmprss2expressionbyclinicalhlaimmuneandmicrobialcorrelatesacross34humancancersandmatchednormaltissuesimplicationsforsarscov2covid19
AT huanglei ace2andtmprss2expressionbyclinicalhlaimmuneandmicrobialcorrelatesacross34humancancersandmatchednormaltissuesimplicationsforsarscov2covid19
AT lukejasonjohn ace2andtmprss2expressionbyclinicalhlaimmuneandmicrobialcorrelatesacross34humancancersandmatchednormaltissuesimplicationsforsarscov2covid19