Cargando…

Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method

This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accur...

Descripción completa

Detalles Bibliográficos
Autores principales: Alajmi, Mahdi S., Almeshal, Abdullah M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372405/
https://www.ncbi.nlm.nih.gov/pubmed/32635519
http://dx.doi.org/10.3390/ma13132986
_version_ 1783561309018652672
author Alajmi, Mahdi S.
Almeshal, Abdullah M.
author_facet Alajmi, Mahdi S.
Almeshal, Abdullah M.
author_sort Alajmi, Mahdi S.
collection PubMed
description This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accuracy, robustness and fast convergence towards global optima. Simulations revealed that ANFIS-QPSO results in accurate prediction of surface roughness with RMSE = 4.86%, MAPE = 4.95% and R(2) = 0.984 for the dry turning process. Similarly, for the cryogenic turning process, ANFIS-QPSO resulted in surface roughness predictions with RMSE = 5.08%, MAPE = 5.15% and R(2) = 0.988 that are of high agreement with the measured values. Performance comparisons between ANFIS-QPSO, ANFIS, ANFIS-GA and ANFIS-PSO suggest that ANFIS-QPSO is an effective method that can ensure a high prediction accuracy of surface roughness values for dry and cryogenic turning processes.
format Online
Article
Text
id pubmed-7372405
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-73724052020-08-05 Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method Alajmi, Mahdi S. Almeshal, Abdullah M. Materials (Basel) Article This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accuracy, robustness and fast convergence towards global optima. Simulations revealed that ANFIS-QPSO results in accurate prediction of surface roughness with RMSE = 4.86%, MAPE = 4.95% and R(2) = 0.984 for the dry turning process. Similarly, for the cryogenic turning process, ANFIS-QPSO resulted in surface roughness predictions with RMSE = 5.08%, MAPE = 5.15% and R(2) = 0.988 that are of high agreement with the measured values. Performance comparisons between ANFIS-QPSO, ANFIS, ANFIS-GA and ANFIS-PSO suggest that ANFIS-QPSO is an effective method that can ensure a high prediction accuracy of surface roughness values for dry and cryogenic turning processes. MDPI 2020-07-04 /pmc/articles/PMC7372405/ /pubmed/32635519 http://dx.doi.org/10.3390/ma13132986 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alajmi, Mahdi S.
Almeshal, Abdullah M.
Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
title Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
title_full Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
title_fullStr Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
title_full_unstemmed Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
title_short Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
title_sort prediction and optimization of surface roughness in a turning process using the anfis-qpso method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372405/
https://www.ncbi.nlm.nih.gov/pubmed/32635519
http://dx.doi.org/10.3390/ma13132986
work_keys_str_mv AT alajmimahdis predictionandoptimizationofsurfaceroughnessinaturningprocessusingtheanfisqpsomethod
AT almeshalabdullahm predictionandoptimizationofsurfaceroughnessinaturningprocessusingtheanfisqpsomethod