Cargando…
Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accur...
Autores principales: | Alajmi, Mahdi S., Almeshal, Abdullah M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372405/ https://www.ncbi.nlm.nih.gov/pubmed/32635519 http://dx.doi.org/10.3390/ma13132986 |
Ejemplares similares
-
Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization
por: Alajmi, Mahdi S., et al.
Publicado: (2021) -
Predicting the Tool Wear of a Drilling Process Using Novel Machine Learning XGBoost-SDA
por: Alajmi, Mahdi S., et al.
Publicado: (2020) -
QPSO-Based Adaptive DNA Computing Algorithm
por: Karakose, Mehmet, et al.
Publicado: (2013) -
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
por: Wen, Tailai, et al.
Publicado: (2018) -
Research and Method of Roughness Prediction of a Curvilinear Surface after Titanium Alloy Turning
por: Matras, Andrzej, et al.
Publicado: (2019)