Cargando…

Toward Current Matching in Tandem Dye-Sensitized Solar Cells

The tandem pn-type dye-sensitized solar cells (pn-DSCs) have received much attention in the field of photovoltaic technologies because of their great potential to overcome the Shockley-Queisser efficiency limitation that applies to single junction photovoltaic devices. However, factors governing the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Junfeng, Shao, Zhipeng, Pan, Bin, Chen, Shuanghong, Hu, Linhua, Dai, Songyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372430/
https://www.ncbi.nlm.nih.gov/pubmed/32629927
http://dx.doi.org/10.3390/ma13132936
Descripción
Sumario:The tandem pn-type dye-sensitized solar cells (pn-DSCs) have received much attention in the field of photovoltaic technologies because of their great potential to overcome the Shockley-Queisser efficiency limitation that applies to single junction photovoltaic devices. However, factors governing the short-circuit current densities (J(sc)) of pn-DSC remain unclear. It is typically believed that J(sc) of the pn-DSC is limited to the highest one that the two independent photoelectrodes can achieve. In this paper, however, we found that the available J(sc) of pn-DSC is always determined by the larger J(sc) that the photoanode can achieve but not by the smaller one in the photocathode. Such experimental findings were verified by a simplified series circuit model, which shows that a breakdown will occur on the photocathode when the photocurrent goes considerably beyond its threshold voltage, thus leading to an abrupt increase in J(sc) of the circuit. The simulation results also suggest that a higher photoconversion efficiency of the pn-DSCs can be only achieved when an almost equivalent photocurrent is achieved for the two photoelectrodes.