Cargando…
A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO(3)
In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the format...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372470/ https://www.ncbi.nlm.nih.gov/pubmed/32645940 http://dx.doi.org/10.3390/ma13133035 |
Sumario: | In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders. |
---|