Cargando…
Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
BACKGROUND: Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning metho...
Autores principales: | Yang, Fang, Fan, Kunjie, Song, Dandan, Lin, Huakang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372763/ https://www.ncbi.nlm.nih.gov/pubmed/32693790 http://dx.doi.org/10.1186/s12859-020-03646-8 |
Ejemplares similares
-
Graph2GO: a multi-modal attributed network embedding method for inferring protein functions
por: Fan, Kunjie, et al.
Publicado: (2020) -
PIKE-R2P: Protein–protein interaction network-based knowledge embedding with graph neural network for single-cell RNA to protein prediction
por: Dai, Xinnan, et al.
Publicado: (2021) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
Robust Attribute and Structure Preserving Graph Embedding
por: Hettige, Bhagya, et al.
Publicado: (2020) -
Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network
por: Xiao, Ze, et al.
Publicado: (2020)