Cargando…
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
BACKGROUND: Privacy-preserving computations on genomic data, and more generally on medical data, is a critical path technology for innovative, life-saving research to positively and equally impact the global population. It enables medical research algorithms to be securely deployed in the cloud beca...
Autores principales: | Carpov, Sergiu, Gama, Nicolas, Georgieva, Mariya, Troncoso-Pastoriza, Juan Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372765/ https://www.ncbi.nlm.nih.gov/pubmed/32693814 http://dx.doi.org/10.1186/s12920-020-0723-0 |
Ejemplares similares
-
Logistic regression over encrypted data from fully homomorphic encryption
por: Chen, Hao, et al.
Publicado: (2018) -
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Author Correction: Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Privacy-preserving cancer type prediction with homomorphic encryption
por: Sarkar, Esha, et al.
Publicado: (2023) -
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
por: Yang, Wencheng, et al.
Publicado: (2023)