Cargando…
Semi-Parallel logistic regression for GWAS on encrypted data
BACKGROUND: The sharing of biomedical data is crucial to enable scientific discoveries across institutions and improve health care. For example, genome-wide association studies (GWAS) based on a large number of samples can identify disease-causing genetic variants. The privacy concern, however, has...
Autores principales: | Kim, Miran, Song, Yongsoo, Li, Baiyu, Micciancio, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372846/ https://www.ncbi.nlm.nih.gov/pubmed/32693798 http://dx.doi.org/10.1186/s12920-020-0724-z |
Ejemplares similares
-
Logistic regression model training based on the approximate homomorphic encryption
por: Kim, Andrey, et al.
Publicado: (2018) -
Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation
por: Kim, Miran, et al.
Publicado: (2018) -
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
por: Carpov, Sergiu, et al.
Publicado: (2020) -
Logistic regression over encrypted data from fully homomorphic encryption
por: Chen, Hao, et al.
Publicado: (2018) -
GWAS on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies
por: Sikorska, Karolina, et al.
Publicado: (2013)