Cargando…
Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images
BACKGROUND: Impaired function of masticatory muscles will lead to trismus. Routine delineation of these muscles during planning may improve dose tracking and facilitate dose reduction resulting in decreased radiation-related trismus. This study aimed to compare a deep learning model with a commercia...
Autores principales: | Chen, Wen, Li, Yimin, Dyer, Brandon A., Feng, Xue, Rao, Shyam, Benedict, Stanley H., Chen, Quan, Rong, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372849/ https://www.ncbi.nlm.nih.gov/pubmed/32690103 http://dx.doi.org/10.1186/s13014-020-01617-0 |
Ejemplares similares
-
Technical note: Atlas‐based Auto‐segmentation of masticatory muscles for head and neck cancer radiotherapy
por: Zhang, Xiangguo, et al.
Publicado: (2020) -
Clinical Enhancement in AI-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy
por: Chen, Wen, et al.
Publicado: (2021) -
Evaluating Automatic Segmentation for Swallowing-Related Organs for
Head and Neck Cancer
por: Li, Yimin, et al.
Publicado: (2022) -
Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region
por: Lee, Hyothaek, et al.
Publicado: (2019) -
Auto-segmentation of head and neck organs at risk in radiotherapy and its dependence on anatomic similarity
por: Ayyalusamy, Anantharaman, et al.
Publicado: (2019)