Cargando…
Identifying the novel key genes in renal cell carcinoma by bioinformatics analysis and cell experiments
BACKGROUND: Although major driver gene have been identified, the complex molecular heterogeneity of renal cell cancer (RCC) remains unclear. Therefore, more relevant genes need to be identified to explain the pathogenesis of renal cancer. METHODS: Microarray datasets GSE781, GSE6344, GSE53000 and GS...
Autores principales: | Chen, Yeda, Gu, Di, Wen, Yaoan, Yang, Shuxin, Duan, Xiaolu, Lai, Yongchang, Yang, Jianan, Yuan, Daozhang, Khan, Aisha, Wu, Wenqi, Zeng, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372855/ https://www.ncbi.nlm.nih.gov/pubmed/32699530 http://dx.doi.org/10.1186/s12935-020-01405-6 |
Ejemplares similares
-
Correction: Identifying the novel key genes in renal cell carcinoma by bioinformatics analysis and cell experiments
por: Chen, Yeda, et al.
Publicado: (2022) -
Percutaneous nephrolithotomy versus flexible ureteroscopic lithotripsy in the treatment of upper urinary tract stones: a meta-analysis comparing clinical efficacy and safety
por: Chen, Yeda, et al.
Publicado: (2020) -
Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma
por: Lai, Yongchang, et al.
Publicado: (2018) -
Identification of key biomarkers associated with cell adhesion in multiple myeloma by integrated bioinformatics analysis
por: Peng, Yue, et al.
Publicado: (2020) -
Bioinformatic analysis identifying FGF1 gene as a new prognostic indicator in clear cell Renal Cell Carcinoma
por: Zhang, Xiaoqin, et al.
Publicado: (2021)