Cargando…
LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks
BACKGROUND: Gene Regulatory Networks (GRNs) have been previously studied by using Boolean/multi-state logics. While the gene expression values are usually scaled into the range [0, 1], these GRN inference methods apply a threshold to discretize the data, resulting in missing information. Most of stu...
Autores principales: | Malekpour, Seyed Amir, Alizad-Rahvar, Amir Reza, Sadeghi, Mehdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372900/ https://www.ncbi.nlm.nih.gov/pubmed/32690031 http://dx.doi.org/10.1186/s12859-020-03651-x |
Ejemplares similares
-
Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis
por: Alizad-Rahvar, Amir Reza, et al.
Publicado: (2018) -
wpLogicNet: logic gate and structure inference in gene regulatory networks
por: Malekpour, Seyed Amir, et al.
Publicado: (2023) -
Probabilistic logics and probabilistic networks
por: Haenni, Rolf, et al.
Publicado: (2014) -
Joint probabilistic-logical refinement of multiple protein feature predictors
por: Teso, Stefano, et al.
Publicado: (2014) -
Effect of asymptomatic transmission and emergence time on multi-strain viral disease severity
por: Alizad-Rahvar, Amir Reza, et al.
Publicado: (2022)