Cargando…

Triptonide Modulates MAPK Signaling Pathways and Exerts Anticancer Effects via ER Stress-Mediated Apoptosis Induction in Human Osteosarcoma Cells

BACKGROUND: Osteosarcoma (OS) is the most common primary malignancy arise from bone and is one of the causes of cancer-related deaths. Triptonide (TN), a diterpenoid epoxide presented in Tripterygium wilfordii, is shown to possess a broad spectrum of biological properties. METHODS: In this study, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Liyun, Fang, Shiji, Hui, Junguo, Rajamanickam, Vinothkumar, Chen, Minjiang, Weng, Qiaoyou, Wu, Xulu, Zhao, Zhongwei, Ji, Jiansong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373419/
https://www.ncbi.nlm.nih.gov/pubmed/32765093
http://dx.doi.org/10.2147/CMAR.S258203
Descripción
Sumario:BACKGROUND: Osteosarcoma (OS) is the most common primary malignancy arise from bone and is one of the causes of cancer-related deaths. Triptonide (TN), a diterpenoid epoxide presented in Tripterygium wilfordii, is shown to possess a broad spectrum of biological properties. METHODS: In this study, we investigate the growth inhibitory effect of TN against human OS cells and its underlying molecular mechanism of action. RESULTS: Findings of our in vitro study revealed that TN exhibited a dose-dependent cytotoxic effect in MG63 and U-2OS cells. ROS-mediated cytotoxic effect was achieved in OS cells treated with TN which was reversed upon NAC treatment. Significantly, increased expression of PERK, p-EIF2, GRP78, ATF4 and CHOP in TN-treated OS cells unfolds the molecular mechanism of TN targets ER stress-mediated apoptosis. Modulation of ERK MAPK pathway was also observed as evidenced by the increased phosphorylation of ERK (p-ERK) and p-p38 in TN-treated OS cells. CONCLUSION: Altogether, the outcome of the study for the first time revealed that TN exhibited its potential chemotherapeutic effects through ROS-mediated ER stress-induced apoptosis via p38 and ERK MAPK signaling pathways.