Cargando…
Evaluation of an artificial intelligent hydrocephalus diagnosis model based on transfer learning
To design and develop artificial intelligence (AI) hydrocephalus (HYC) imaging diagnostic model using a transfer learning algorithm and evaluate its application in the diagnosis of HYC by non-contrast material-enhanced head computed tomographic (CT) images. A training and validation dataset of non-c...
Autores principales: | Duan, Weike, Zhang, Jinsen, Zhang, Liang, Lin, Zongsong, Chen, Yuhang, Hao, Xiaowei, Wang, Yixin, Zhang, Hongri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373556/ https://www.ncbi.nlm.nih.gov/pubmed/32702895 http://dx.doi.org/10.1097/MD.0000000000021229 |
Ejemplares similares
-
Radiological education in the era of artificial intelligence: A review
por: Wang, Chao, et al.
Publicado: (2023) -
Diffusion tensor imaging detects early brain microstructure changes before and after ventriculoperitoneal shunt in children with high intracranial pressure hydrocephalus
por: Zhao, Cailei, et al.
Publicado: (2016) -
Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence: A case series
por: Shimada, Yuki, et al.
Publicado: (2020) -
Bringing prevost's sign into the third dimension: Artificial intelligence estimation of conjugate gaze adjusted length (CGAL) and correlation with acute ischemic stroke
por: Maresky, Hillel S., et al.
Publicado: (2020) -
Accurate diagnosis of pulmonary inflammatory myofibroblastic tumor by imaging technology before operation: A case report
por: Sun, Lv, et al.
Publicado: (2023)