Cargando…
Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach
Marked enhancement of the fibroglandular tissue on contrast-enhanced breast magnetic resonance imaging (MRI) may affect lesion detection and classification and is suggested to be associated with higher risk of developing breast cancer. The background parenchymal enhancement (BPE) is qualitatively cl...
Autores principales: | Borkowski, Karol, Rossi, Cristina, Ciritsis, Alexander, Marcon, Magda, Hejduk, Patryk, Stieb, Sonja, Boss, Andreas, Berger, Nicole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373599/ https://www.ncbi.nlm.nih.gov/pubmed/32702902 http://dx.doi.org/10.1097/MD.0000000000021243 |
Ejemplares similares
-
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
Generalizable attention U-Net for segmentation of fibroglandular tissue and background parenchymal enhancement in breast DCE-MRI
por: Nowakowska, Sylwia, et al.
Publicado: (2023) -
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
por: Landsmann, Anna, et al.
Publicado: (2022) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Analysis of background parenchymal echogenicity on breast ultrasound: Correlation with mammographic breast density and background parenchymal enhancement on magnetic resonance imaging
por: Ko, Kyung Hee, et al.
Publicado: (2017)