Cargando…
Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery
The addition of a methyl group to the N6 position of adenosine (m6A) is the most common posttranscriptional RNA modification, and it regulates most steps of RNA metabolism including splicing, stability, translation, nuclear-export, and RNA structures. Besides cellular RNA, m6A modifications have als...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373739/ https://www.ncbi.nlm.nih.gov/pubmed/32760718 http://dx.doi.org/10.3389/fcell.2020.00543 |
_version_ | 1783561553064230912 |
---|---|
author | Bayoumi, Mahmoud Rohaim, Mohammed A. Munir, Muhammad |
author_facet | Bayoumi, Mahmoud Rohaim, Mohammed A. Munir, Muhammad |
author_sort | Bayoumi, Mahmoud |
collection | PubMed |
description | The addition of a methyl group to the N6 position of adenosine (m6A) is the most common posttranscriptional RNA modification, and it regulates most steps of RNA metabolism including splicing, stability, translation, nuclear-export, and RNA structures. Besides cellular RNA, m6A modifications have also been detected on viral RNA. A range of recent studies have demonstrated the crucial roles of m6A in the virus–host interactions; however, m6A cellular machineries are only characterized in limited mammalian species. Herein, we aim to present comprehensive evolutionary insights into major m6A writers, erasers, and readers and draw a comparative structural analysis between avian and mammalian m6A-associated machineries. The comparative collinearity on the chromosomal scale revealed that the majority of m6A-related genes were found less syntenic even among avian species. Genetic analysis of avian m6A erasers revealed a distinct phylogenetic clustering compared to mammalian orthologs and shared a weak percent (55%) identity with mammalian species with low identity percentage (55%). The overall comparative three-dimensional (3D) structure analyses among different mammalian species were maintained through synonymous structural mutations. Unlike erasers, the putative 3D structures in the active sites as for the aromatic cage in YTH-domain of YTHDC1 and two pivotal loops in MTD-domains in METTL3 exhibited structural alterations in chicken. In conjunction with in silico investigations, influenza viruses significantly downregulated gene the transcription of m6A writers and erasers, whereas m6A readers were moderately regulated in chicken fibroblasts. In light of these findings, future detailed biochemical and crystallographic studies are warranted to define the roles of m6A machinery in regulating both viral and cellular RNA metabolism in avian species. |
format | Online Article Text |
id | pubmed-7373739 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73737392020-08-04 Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery Bayoumi, Mahmoud Rohaim, Mohammed A. Munir, Muhammad Front Cell Dev Biol Cell and Developmental Biology The addition of a methyl group to the N6 position of adenosine (m6A) is the most common posttranscriptional RNA modification, and it regulates most steps of RNA metabolism including splicing, stability, translation, nuclear-export, and RNA structures. Besides cellular RNA, m6A modifications have also been detected on viral RNA. A range of recent studies have demonstrated the crucial roles of m6A in the virus–host interactions; however, m6A cellular machineries are only characterized in limited mammalian species. Herein, we aim to present comprehensive evolutionary insights into major m6A writers, erasers, and readers and draw a comparative structural analysis between avian and mammalian m6A-associated machineries. The comparative collinearity on the chromosomal scale revealed that the majority of m6A-related genes were found less syntenic even among avian species. Genetic analysis of avian m6A erasers revealed a distinct phylogenetic clustering compared to mammalian orthologs and shared a weak percent (55%) identity with mammalian species with low identity percentage (55%). The overall comparative three-dimensional (3D) structure analyses among different mammalian species were maintained through synonymous structural mutations. Unlike erasers, the putative 3D structures in the active sites as for the aromatic cage in YTH-domain of YTHDC1 and two pivotal loops in MTD-domains in METTL3 exhibited structural alterations in chicken. In conjunction with in silico investigations, influenza viruses significantly downregulated gene the transcription of m6A writers and erasers, whereas m6A readers were moderately regulated in chicken fibroblasts. In light of these findings, future detailed biochemical and crystallographic studies are warranted to define the roles of m6A machinery in regulating both viral and cellular RNA metabolism in avian species. Frontiers Media S.A. 2020-07-15 /pmc/articles/PMC7373739/ /pubmed/32760718 http://dx.doi.org/10.3389/fcell.2020.00543 Text en Copyright © 2020 Bayoumi, Rohaim and Munir. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Bayoumi, Mahmoud Rohaim, Mohammed A. Munir, Muhammad Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery |
title | Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery |
title_full | Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery |
title_fullStr | Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery |
title_full_unstemmed | Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery |
title_short | Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery |
title_sort | structural and virus regulatory insights into avian n6-methyladenosine (m6a) machinery |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373739/ https://www.ncbi.nlm.nih.gov/pubmed/32760718 http://dx.doi.org/10.3389/fcell.2020.00543 |
work_keys_str_mv | AT bayoumimahmoud structuralandvirusregulatoryinsightsintoaviann6methyladenosinem6amachinery AT rohaimmohammeda structuralandvirusregulatoryinsightsintoaviann6methyladenosinem6amachinery AT munirmuhammad structuralandvirusregulatoryinsightsintoaviann6methyladenosinem6amachinery |