Cargando…
Modern Tools for Rapid Diagnostics of Antimicrobial Resistance
Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373752/ https://www.ncbi.nlm.nih.gov/pubmed/32760676 http://dx.doi.org/10.3389/fcimb.2020.00308 |
_version_ | 1783561556068401152 |
---|---|
author | Vasala, Antti Hytönen, Vesa P. Laitinen, Olli H. |
author_facet | Vasala, Antti Hytönen, Vesa P. Laitinen, Olli H. |
author_sort | Vasala, Antti |
collection | PubMed |
description | Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial Susceptibility Testing, Clinical Laboratory Standards Institute) recommendations is currently suggested to guide the antimicrobial therapy. Any new AST should be validated against these standard methods. Many rapid diagnostic techniques can already provide pathogen identification. Some of them can additionally detect the presence of resistance genes or resistance proteins, but usually isolated pure cultures are needed for AST. We discuss the value of the technologies applying nucleic acid amplification, whole genome sequencing, and hybridization as well as immunodiagnostic and mass spectrometry-based methods and biosensor-based AST. Additionally, we evaluate the potential of integrated systems applying microfluidics to integrate cultivation, lysis, purification, and signal reading steps. We discuss technologies and commercial products with potential for Point-of-Care Testing (POCT) and their capability to analyze polymicrobial samples without pre-purification steps. The purpose of this critical review is to present the needs and drivers for AST development, to show the benefits and limitations of AST methods, to introduce promising new POCT-compatible technologies, and to discuss AST technologies that are likely to thrive in the future. |
format | Online Article Text |
id | pubmed-7373752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73737522020-08-04 Modern Tools for Rapid Diagnostics of Antimicrobial Resistance Vasala, Antti Hytönen, Vesa P. Laitinen, Olli H. Front Cell Infect Microbiol Cellular and Infection Microbiology Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial Susceptibility Testing, Clinical Laboratory Standards Institute) recommendations is currently suggested to guide the antimicrobial therapy. Any new AST should be validated against these standard methods. Many rapid diagnostic techniques can already provide pathogen identification. Some of them can additionally detect the presence of resistance genes or resistance proteins, but usually isolated pure cultures are needed for AST. We discuss the value of the technologies applying nucleic acid amplification, whole genome sequencing, and hybridization as well as immunodiagnostic and mass spectrometry-based methods and biosensor-based AST. Additionally, we evaluate the potential of integrated systems applying microfluidics to integrate cultivation, lysis, purification, and signal reading steps. We discuss technologies and commercial products with potential for Point-of-Care Testing (POCT) and their capability to analyze polymicrobial samples without pre-purification steps. The purpose of this critical review is to present the needs and drivers for AST development, to show the benefits and limitations of AST methods, to introduce promising new POCT-compatible technologies, and to discuss AST technologies that are likely to thrive in the future. Frontiers Media S.A. 2020-07-15 /pmc/articles/PMC7373752/ /pubmed/32760676 http://dx.doi.org/10.3389/fcimb.2020.00308 Text en Copyright © 2020 Vasala, Hytönen and Laitinen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Vasala, Antti Hytönen, Vesa P. Laitinen, Olli H. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance |
title | Modern Tools for Rapid Diagnostics of Antimicrobial Resistance |
title_full | Modern Tools for Rapid Diagnostics of Antimicrobial Resistance |
title_fullStr | Modern Tools for Rapid Diagnostics of Antimicrobial Resistance |
title_full_unstemmed | Modern Tools for Rapid Diagnostics of Antimicrobial Resistance |
title_short | Modern Tools for Rapid Diagnostics of Antimicrobial Resistance |
title_sort | modern tools for rapid diagnostics of antimicrobial resistance |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373752/ https://www.ncbi.nlm.nih.gov/pubmed/32760676 http://dx.doi.org/10.3389/fcimb.2020.00308 |
work_keys_str_mv | AT vasalaantti moderntoolsforrapiddiagnosticsofantimicrobialresistance AT hytonenvesap moderntoolsforrapiddiagnosticsofantimicrobialresistance AT laitinenollih moderntoolsforrapiddiagnosticsofantimicrobialresistance |