Cargando…
Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network
In this paper, we show an innovative way to construct bootstrap confidence interval of a signal estimated based on a univariate LSTM model. We take three different types of bootstrap methods for dependent set up. We prescribe some useful suggestions to select the optimal block length while performin...
Autores principales: | De, Shankhajyoti, Dey, Arabin Kumar, Gouda, Deepak Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373837/ http://dx.doi.org/10.1007/s40745-020-00307-8 |
Ejemplares similares
-
Forecasting stock prices with long-short term memory neural network based on attention mechanism
por: Qiu, Jiayu, et al.
Publicado: (2020) -
An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting
por: Kumar, Gourav, et al.
Publicado: (2022) -
Market Confidence Predicts Stock Price: Beyond Supply and Demand
por: Sun, Xiao-Qian, et al.
Publicado: (2016) -
Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM)
por: Budiharto, Widodo
Publicado: (2021) -
An Exotic Long-Term Pattern in Stock Price Dynamics
por: Wei, Jianrong, et al.
Publicado: (2012)