Cargando…

Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias

OBJECTIVE: Identify which biomarkers performed in the first emergency analysis help to stratify COVID-19 patients according to mortality risk. METHOD: Observational, descriptive and cross-sectional study performed with data collected from patients with suspected COVID-19 in the Emergency Department...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascual Gómez, Natalia F., Lobo, Iván Monge, Cremades, Inmaculada Granero, Tejerina, Angels Figuerola, Rueda, Fernando Ramasco, Teleki, Andrés von Wernitz, Campos, Francisco Manuel Arrabal, de Benito, M. Ángeles Sanz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedad Española de Quimioterapia 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374038/
https://www.ncbi.nlm.nih.gov/pubmed/32657550
http://dx.doi.org/10.37201/req/060.2020
_version_ 1783561612997689344
author Pascual Gómez, Natalia F.
Lobo, Iván Monge
Cremades, Inmaculada Granero
Tejerina, Angels Figuerola
Rueda, Fernando Ramasco
Teleki, Andrés von Wernitz
Campos, Francisco Manuel Arrabal
de Benito, M. Ángeles Sanz
author_facet Pascual Gómez, Natalia F.
Lobo, Iván Monge
Cremades, Inmaculada Granero
Tejerina, Angels Figuerola
Rueda, Fernando Ramasco
Teleki, Andrés von Wernitz
Campos, Francisco Manuel Arrabal
de Benito, M. Ángeles Sanz
author_sort Pascual Gómez, Natalia F.
collection PubMed
description OBJECTIVE: Identify which biomarkers performed in the first emergency analysis help to stratify COVID-19 patients according to mortality risk. METHOD: Observational, descriptive and cross-sectional study performed with data collected from patients with suspected COVID-19 in the Emergency Department from February 24 to March 16, 2020. The univariate and multivariate study was performed to find independent mortality markers and calculate risk by building a severity score. RESULTS: A total of 163 patients were included, of whom 33 died and 29 of them were positive for the COVID-19 PCR test. We obtained as possible factors to conform the Mortality Risk Score age> 75 years ((adjusted OR = 12,347, 95% CI: 4,138-36,845 p = 0.001), total leukocytes> 11,000 cells / mm(3) (adjusted OR = 2,649, 95% CI: 0.879-7.981 p = 0.083), glucose> 126 mg / dL (adjusted OR = 3.716, 95% CI: 1.24711.074 p = 0.018) and creatinine> 1.1 mg / dL (adjusted OR = 2.566, 95% CI: 0.8897.403, p = 0.081) This score was called COVEB (COVID, Age, Basic analytical profile) with an AUC 0.874 (95% CI: 0.816-0.933, p <0.001; Cut-off point = 1 (sensitivity = 89.66 % (95% CI: 72.6% -97.8%), specificity = 75.59% (95% CI: 67.2% -82.8%). A score <1 has a negative predictive value = 100% (95% CI: 93.51% -100%) and a positive predictive value = 18.59% (95% CI: 12.82% -25.59%). CONCLUSIONS: . Clinical severity scales, kidney function biomarkers, white blood cell count parameters, the total neutrophils / total lymphocytes ratio and procalcitonin are early risk factors for mortality. The variables age, glucose, creatinine and total leukocytes stand out as the best predictors of mortality. A COVEB score <1 indicates with a 100% probability that the patient with suspected COVID-19 will not die in the next 30 days.
format Online
Article
Text
id pubmed-7374038
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Sociedad Española de Quimioterapia
record_format MEDLINE/PubMed
spelling pubmed-73740382020-07-27 Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias Pascual Gómez, Natalia F. Lobo, Iván Monge Cremades, Inmaculada Granero Tejerina, Angels Figuerola Rueda, Fernando Ramasco Teleki, Andrés von Wernitz Campos, Francisco Manuel Arrabal de Benito, M. Ángeles Sanz Rev Esp Quimioter Original OBJECTIVE: Identify which biomarkers performed in the first emergency analysis help to stratify COVID-19 patients according to mortality risk. METHOD: Observational, descriptive and cross-sectional study performed with data collected from patients with suspected COVID-19 in the Emergency Department from February 24 to March 16, 2020. The univariate and multivariate study was performed to find independent mortality markers and calculate risk by building a severity score. RESULTS: A total of 163 patients were included, of whom 33 died and 29 of them were positive for the COVID-19 PCR test. We obtained as possible factors to conform the Mortality Risk Score age> 75 years ((adjusted OR = 12,347, 95% CI: 4,138-36,845 p = 0.001), total leukocytes> 11,000 cells / mm(3) (adjusted OR = 2,649, 95% CI: 0.879-7.981 p = 0.083), glucose> 126 mg / dL (adjusted OR = 3.716, 95% CI: 1.24711.074 p = 0.018) and creatinine> 1.1 mg / dL (adjusted OR = 2.566, 95% CI: 0.8897.403, p = 0.081) This score was called COVEB (COVID, Age, Basic analytical profile) with an AUC 0.874 (95% CI: 0.816-0.933, p <0.001; Cut-off point = 1 (sensitivity = 89.66 % (95% CI: 72.6% -97.8%), specificity = 75.59% (95% CI: 67.2% -82.8%). A score <1 has a negative predictive value = 100% (95% CI: 93.51% -100%) and a positive predictive value = 18.59% (95% CI: 12.82% -25.59%). CONCLUSIONS: . Clinical severity scales, kidney function biomarkers, white blood cell count parameters, the total neutrophils / total lymphocytes ratio and procalcitonin are early risk factors for mortality. The variables age, glucose, creatinine and total leukocytes stand out as the best predictors of mortality. A COVEB score <1 indicates with a 100% probability that the patient with suspected COVID-19 will not die in the next 30 days. Sociedad Española de Quimioterapia 2020-07-13 2020 /pmc/articles/PMC7374038/ /pubmed/32657550 http://dx.doi.org/10.37201/req/060.2020 Text en © The Author 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)(https://creativecommons.org/licenses/by-nc/4.0/).
spellingShingle Original
Pascual Gómez, Natalia F.
Lobo, Iván Monge
Cremades, Inmaculada Granero
Tejerina, Angels Figuerola
Rueda, Fernando Ramasco
Teleki, Andrés von Wernitz
Campos, Francisco Manuel Arrabal
de Benito, M. Ángeles Sanz
Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias
title Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias
title_full Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias
title_fullStr Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias
title_full_unstemmed Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias
title_short Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias
title_sort potenciales biomarcadores predictores de mortalidad en pacientes covid-19 en el servicio de urgencias
topic Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374038/
https://www.ncbi.nlm.nih.gov/pubmed/32657550
http://dx.doi.org/10.37201/req/060.2020
work_keys_str_mv AT pascualgomeznataliaf potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT loboivanmonge potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT cremadesinmaculadagranero potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT tejerinaangelsfiguerola potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT ruedafernandoramasco potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT telekiandresvonwernitz potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT camposfranciscomanuelarrabal potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias
AT debenitomangelessanz potencialesbiomarcadorespredictoresdemortalidadenpacientescovid19enelserviciodeurgencias