Cargando…

T4 Pili Promote Colonization and Immune Evasion Phenotypes of Nonencapsulated M4 Streptococcus pyogenes

Streptococcus pyogenes (group A Streptococcus [GAS]) is an important human pathogen causing a broad spectrum of diseases and associated with significant global morbidity and mortality. Almost all GAS isolates express a surface hyaluronic acid capsule, a virulence determinant that facilitates host co...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yi-Hsuan, Li, Shao-Hui, Yang, Yao-Cheng, Hsu, Shu-Hao, Nizet, Victor, Chang, Yung-Chi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374061/
https://www.ncbi.nlm.nih.gov/pubmed/32694142
http://dx.doi.org/10.1128/mBio.01580-20
Descripción
Sumario:Streptococcus pyogenes (group A Streptococcus [GAS]) is an important human pathogen causing a broad spectrum of diseases and associated with significant global morbidity and mortality. Almost all GAS isolates express a surface hyaluronic acid capsule, a virulence determinant that facilitates host colonization and impedes phagocyte killing. However, recent epidemiologic surveillance has reported a sustained increase in both mucosal and invasive infections caused by nonencapsulated GAS, which questions the indispensable role of hyaluronic acid capsule in GAS pathogenesis. In this study, we found that pilus of M4 GAS not only significantly promotes biofilm formation, adherence, and cytotoxicity to human upper respiratory tract epithelial cells and keratinocytes, but also promotes survival in human whole blood and increased virulence in murine models of invasive infection. T4 antigen, the pilus backbone protein of M4 GAS, binds haptoglobin, an abundant human acute-phase protein upregulated upon infection and inflammation, on the bacterial surface. Haptoglobin sequestration reduces the susceptibility of nonencapsulated M4 GAS to antimicrobial peptides released from activated neutrophils and platelets. Our results reveal a previously unappreciated virulence-promoting role of M4 GAS pili, in part mediated by co-opting the biology of haptoglobin to mitigate host antimicrobial defenses.