Cargando…
Adaptive ERK signalling activation in response to therapy and in silico prognostic evaluation of EGFR-MAPK in HNSCC
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) patients frequently develop treatment resistance to cetuximab, a monoclonal antibody against EGFR, as well as radiotherapy. Here we addressed extracellular signal-regulated kinase 1/2 (ERK1/2) regulation by cetuximab or fractionated irradiati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374086/ https://www.ncbi.nlm.nih.gov/pubmed/32424150 http://dx.doi.org/10.1038/s41416-020-0892-9 |
Sumario: | BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) patients frequently develop treatment resistance to cetuximab, a monoclonal antibody against EGFR, as well as radiotherapy. Here we addressed extracellular signal-regulated kinase 1/2 (ERK1/2) regulation by cetuximab or fractionated irradiation (IR) and conducted in silico prognostic evaluation of the EGFR-MAPK axis in HNSCC. METHODS: Expression of ERK1/2 phosphorylation (pERK1/2) was determined in HNSCC cell lines, which were treated with cetuximab or fractionated-IR. Furthermore, the effect of fractionated IR on pERK1/2 was confirmed in an ex vivo HNSCC tissue culture model. Expression and prognostic significance of EGFR-ERK axis was evaluated in a cohort of radiotherapy plus cetuximab-treated HNSCC. Correlations among EGFR-MAPK signalling components and association between transcript and protein expression profiles and patient survival in HNSCC were analysed using publicly available databases. RESULTS: ERK1/2 phosphorylation was rebounded by prolonged cetuximab administration and was induced by fractionated IR, which could be suppressed by a MEK inhibitor as a radiosensitiser. In silico assessments suggested that EGFR-MAPK cascade genes and proteins could predict HNSCC patients’ survival as a prognostic signature. CONCLUSIONS: Activation of ERK1/2 signalling contributes to the cellular defence of HNSCC against cetuximab and fractionated IR treatment. EGFR-MAPK axis has a prognostic significance in HNSCC. |
---|