Cargando…
Rich essential properties of Si-doped graphene
The diverse structural and electronic properties of the Si-adsorbed and -substituted monolayer graphene systems are studied by a complete theoretical framework under the first-principles calculations, including the adatom-diversified geometric structures, the Si- and C-dominated energy bands, the sp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374172/ https://www.ncbi.nlm.nih.gov/pubmed/32694799 http://dx.doi.org/10.1038/s41598-020-68765-x |
Sumario: | The diverse structural and electronic properties of the Si-adsorbed and -substituted monolayer graphene systems are studied by a complete theoretical framework under the first-principles calculations, including the adatom-diversified geometric structures, the Si- and C-dominated energy bands, the spatial charge densities, variations in the spatial charge densities and the atom- and orbital-projected density of states (DOSs). These critical physical quantities are unified together to display a distinct physical and chemical picture in the studying systems. Under the Si-adsorption and Si-substitution effects, the planar geometric structures are still remained mainly owing to the very strong C–C and Si–C bonds on the honeycomb lattices, respectively. The Si-adsorption cases can create free carriers, while the finite- or zero-gap semiconducting behaviors are revealed in various Si-substitution configurations. The developed theoretical framework can be fully generalized to other emergent layered materials. The Si-doped graphene systems might be a highly promising anode material in the lithium-ion battery owing to its rich potential properties. |
---|