Cargando…

A stretched logistic equation for pandemic spreading

In this brief work we present a novel approach to the logistic dynamics of populations and epidemic spreading that can take into account of the complex nature of such a process in several real situations, where due to different agents the dynamics is no longer characterized by a single characteristi...

Descripción completa

Detalles Bibliográficos
Autores principales: Consolini, Giuseppe, Materassi, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374175/
https://www.ncbi.nlm.nih.gov/pubmed/32834630
http://dx.doi.org/10.1016/j.chaos.2020.110113
Descripción
Sumario:In this brief work we present a novel approach to the logistic dynamics of populations and epidemic spreading that can take into account of the complex nature of such a process in several real situations, where due to different agents the dynamics is no longer characterized by a single characteristic timescale, but conversely by a distribution of time scales, rendered via a time-dependent growth rate. In detail, a differential equation containing a power-law time dependent growth rate is proposed, whose solution, named Stretched Logistic Function, provides a modified version of the usual logistic function. The model equation is inspired by and applied to the recent spreading on COVID-19 disease in Italy, showing how the real dynamics of infection spreading is characterized by a time dependent dynamics. A speculative discussion of the Stretched Logistic Function in relation to diffusion processes is attempted.