Cargando…

Physical Properties of Nanoparticles That Result in Improved Cancer Targeting

The therapeutic efficacy of drugs is dependent upon the ability of a drug to reach its target, and drug penetration into tumors is limited by abnormal vasculature and high interstitial pressure. Chemotherapy is the most common systemic treatment for cancer but can cause undesirable adverse effects,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zein, Randa, Sharrouf, Wissam, Selting, Kim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374236/
https://www.ncbi.nlm.nih.gov/pubmed/32765604
http://dx.doi.org/10.1155/2020/5194780
Descripción
Sumario:The therapeutic efficacy of drugs is dependent upon the ability of a drug to reach its target, and drug penetration into tumors is limited by abnormal vasculature and high interstitial pressure. Chemotherapy is the most common systemic treatment for cancer but can cause undesirable adverse effects, including toxicity to the bone marrow and gastrointestinal system. Therefore, nanotechnology-based drug delivery systems have been developed to reduce the adverse effects of traditional chemotherapy by enhancing the penetration and selective drug retention in tumor tissues. A thorough knowledge of the physical properties (e.g., size, surface charge, shape, and mechanical strength) and chemical attributes of nanoparticles is crucial to facilitate the application of nanotechnology to biomedical applications. This review provides a summary of how the attributes of nanoparticles can be exploited to improve therapeutic efficacy. An ideal nanoparticle is proposed at the end of this review in order to guide future development of nanoparticles for improved drug targeting in vivo.