Cargando…
Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition Using Deep Convolutional Neural Networks
With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized servi...
Autores principales: | Otebolaku, Abayomi, Enamamu, Timibloudi, Alfoudi, Ali, Ikpehai, Augustine, Marchang, Jims, Lee, Gyu Myoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374292/ https://www.ncbi.nlm.nih.gov/pubmed/32646025 http://dx.doi.org/10.3390/s20133803 |
Ejemplares similares
-
Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction
por: Enamamu, Timibloudi, et al.
Publicado: (2020) -
Fusion of Video and Inertial Sensing for Deep Learning–Based Human Action Recognition
por: Wei, Haoran, et al.
Publicado: (2019) -
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
por: Su, Binbin, et al.
Publicado: (2020) -
A Blockchain Secured Pharmaceutical Distribution System to Fight Counterfeiting
por: Zoughalian, Kavyan, et al.
Publicado: (2022) -
Deep Neural Network for the Detections of Fall and Physical Activities Using Foot Pressures and Inertial Sensing
por: Chan, Hsiao-Lung, et al.
Publicado: (2023)