Cargando…
An Efficient and Robust Deep Learning Method with 1-D Octave Convolution to Extract Fetal Electrocardiogram
The invasive method of fetal electrocardiogram (fECG) monitoring is widely used with electrodes directly attached to the fetal scalp. There are potential risks such as infection and, thus, it is usually carried out during labor in rare cases. Recent advances in electronics and technologies have enab...
Autores principales: | Vo, Khuong, Le, Tai, Rahmani, Amir M., Dutt, Nikil, Cao, Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374297/ https://www.ncbi.nlm.nih.gov/pubmed/32635568 http://dx.doi.org/10.3390/s20133757 |
Ejemplares similares
-
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021) -
Accurate Tumor Segmentation via Octave Convolution Neural Network
por: Wang, Bo, et al.
Publicado: (2021) -
Investigation of Methods to Extract Fetal Electrocardiogram from the Mother’s Abdominal Signal in Practical Scenarios
por: Sarafan, Sadaf, et al.
Publicado: (2020) -
Fetal Electrocardiogram Extraction from the Mother’s Abdominal Signal Using the Ensemble Kalman Filter
por: Sarafan, Sadaf, et al.
Publicado: (2022) -
Robust R-peak detection in an electrocardiogram with stationary wavelet transformation and separable convolution
por: Yun, Donghwan, et al.
Publicado: (2022)