Cargando…
Quantized Residual Preference Based Linkage Clustering for Model Selection and Inlier Segmentation in Geometric Multi-Model Fitting
In this paper, quantized residual preference is proposed to represent the hypotheses and the points for model selection and inlier segmentation in multi-structure geometric model fitting. First, a quantized residual preference is proposed to represent the hypotheses. Through a weighted similarity me...
Autores principales: | Zhao, Qing, Zhang, Yun, Qin, Qianqing, Luo, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374324/ https://www.ncbi.nlm.nih.gov/pubmed/32646048 http://dx.doi.org/10.3390/s20133806 |
Ejemplares similares
-
Outlier Detection Based on Residual Histogram Preference for Geometric Multi-Model Fitting
por: Zhao, Xi, et al.
Publicado: (2020) -
Geometric quantization
por: Woodhouse, N M J
Publicado: (1997) -
Geometric quantization
por: Woodhouse, Nicholas Michael John
Publicado: (1980) -
Processing costed inpatient episodes to cost weights for inlier equivalent separations: the ends should fit the means
por: Aisbett, C W
Publicado: (2010) -
Lectures on geometric quantization
por: Simms, David John, et al.
Publicado: (1976)