Cargando…
Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data
Important wine quality traits such as sensory profile and color are the product of complex interactions between the soil, grapevine, the environment, management, and winemaking practices. Artificial intelligence (AI) and specifically machine learning (ML) could offer powerful tools to assess these c...
Autores principales: | Fuentes, Sigfredo, Torrico, Damir D., Tongson, Eden, Gonzalez Viejo, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374325/ https://www.ncbi.nlm.nih.gov/pubmed/32605057 http://dx.doi.org/10.3390/s20133618 |
Ejemplares similares
-
Modeling Pinot Noir Aroma Profiles Based on Weather and Water Management Information Using Machine Learning Algorithms: A Vertical Vintage Analysis Using Artificial Intelligence
por: Fuentes, Sigfredo, et al.
Publicado: (2019) -
Berry Cell Vitality Assessment and the Effect on Wine Sensory Traits Based on Chemical Fingerprinting, Canopy Architecture and Machine Learning Modelling
por: Fuentes, Sigfredo, et al.
Publicado: (2021) -
Focus on the role of seed tannins and pectolytic enzymes in the color development of Pinot noir wine
por: Sparrow, Angela M., et al.
Publicado: (2021) -
The Potential Effect of β-Ionone and β-Damascenone on Sensory Perception of Pinot Noir Wine Aroma
por: Tomasino, Elizabeth, et al.
Publicado: (2021) -
Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry
por: Steenwerth, Kerri L., et al.
Publicado: (2021)