Cargando…
An Innovative Multi-Model Neural Network Approach for Feature Selection in Emotion Recognition Using Deep Feature Clustering
Emotional awareness perception is a largely growing field that allows for more natural interactions between people and machines. Electroencephalography (EEG) has emerged as a convenient way to measure and track a user’s emotional state. The non-linear characteristic of the EEG signal produces a high...
Autores principales: | Asghar, Muhammad Adeel, Khan, Muhammad Jamil, Rizwan, Muhammad, Mehmood, Raja Majid, Kim, Sun-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374326/ https://www.ncbi.nlm.nih.gov/pubmed/32635609 http://dx.doi.org/10.3390/s20133765 |
Ejemplares similares
-
EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach
por: Asghar, Muhammad Adeel, et al.
Publicado: (2019) -
AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification
por: Asghar, Muhammad Adeel, et al.
Publicado: (2021) -
DFT-Net: Deep Feature Transformation Based Network for Object Categorization and Part Segmentation in 3-Dimensional Point Clouds
por: Sheikh, Mehak, et al.
Publicado: (2022) -
An AI-empowered affect recognition model for healthcare and emotional well-being using physiological signals
por: Zhou, Zijian, et al.
Publicado: (2022) -
Impact of Feature Selection Algorithm on Speech Emotion Recognition Using Deep Convolutional Neural Network
por: Farooq, Misbah, et al.
Publicado: (2020)