Cargando…
LSTM-Based VAE-GAN for Time-Series Anomaly Detection
Time series anomaly detection is widely used to monitor the equipment sates through the data collected in the form of time series. At present, the deep learning method based on generative adversarial networks (GAN) has emerged for time series anomaly detection. However, this method needs to find the...
Autores principales: | Niu, Zijian, Yu, Ke, Wu, Xiaofei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374329/ https://www.ncbi.nlm.nih.gov/pubmed/32635374 http://dx.doi.org/10.3390/s20133738 |
Ejemplares similares
-
DA-LSTM-VAE: Dual-Stage Attention-Based LSTM-VAE for KPI Anomaly Detection
por: Zhao, Yun, et al.
Publicado: (2022) -
A Disentangled VAE-BiLSTM Model for Heart Rate Anomaly Detection
por: Staffini, Alessio, et al.
Publicado: (2023) -
PCovNet+: A CNN-VAE anomaly detection framework with LSTM embeddings for smartwatch-based COVID-19 detection
por: Abir, Farhan Fuad, et al.
Publicado: (2023) -
Fast simulation of the LHCb electromagnetic calorimeter response using VAEs and GANs
por: Sergeev, Fedor, et al.
Publicado: (2021) -
Forecasting for Chaotic Time Series Based on GRP-lstmGAN Model: Application to Temperature Series of Rotary Kiln
por: Hu, Wenyu, et al.
Publicado: (2022)