Cargando…
On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
The reconstruction of fine-scale information from sparse data measured at irregular locations is often needed in many diverse applications, including numerous instances of practical fluid dynamics observed in natural environments. This need is driven by tasks such as data assimilation or the recover...
Autores principales: | Jayaraman, Balaji, Mamun, S M Abdullah Al |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374391/ https://www.ncbi.nlm.nih.gov/pubmed/32635527 http://dx.doi.org/10.3390/s20133752 |
Ejemplares similares
-
Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application
por: Opoku, Eugene A., et al.
Publicado: (2021) -
Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays
por: Qin, Linxia, et al.
Publicado: (2012) -
Block Sparse Compressed Sensing of Electroencephalogram (EEG) Signals by Exploiting Linear and Non-Linear Dependencies
por: Mahrous, Hesham, et al.
Publicado: (2016) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998) -
A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data
por: Bhadra, Sahely, et al.
Publicado: (2009)