Cargando…
Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View
Electromagnetic coils are a key component in a variety of systems and are widely used in many industries. Because their insulation usually fails suddenly and can have catastrophic effects, degradation monitoring of coil insulation systems plays a vital role in avoiding unexpected machine shutdown. T...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374401/ https://www.ncbi.nlm.nih.gov/pubmed/32630343 http://dx.doi.org/10.3390/s20133696 |
_version_ | 1783561690579730432 |
---|---|
author | Wang, Kai Guo, Haifeng Xu, Aidong Pecht, Michael |
author_facet | Wang, Kai Guo, Haifeng Xu, Aidong Pecht, Michael |
author_sort | Wang, Kai |
collection | PubMed |
description | Electromagnetic coils are a key component in a variety of systems and are widely used in many industries. Because their insulation usually fails suddenly and can have catastrophic effects, degradation monitoring of coil insulation systems plays a vital role in avoiding unexpected machine shutdown. The existing insulation degradation monitoring methods are based on assessing the change of coil high-frequency electrical parameter response, whereas the effects of the insulation failure mechanisms are not considered, which leads to inconsistency between experimental results. Therefore, this paper investigates degradation monitoring of coil insulation systems under thermal loading conditions from a creep point of view. Inter-turn insulation creep deformation is identified as a quantitative index to manifest insulation degradation changes at the micro level. A method is developed to map coil high-frequency electrical monitoring parameters to inter-turn insulation creep deformation in order to bridge the gap between the micro-level and macro-level changes during the incipient insulation degradation process. Thermally accelerated tests are performed to validate the developed method. The mapping method helps to determine the physical meaning of coil electrical monitoring parameters and presents opportunities for predictive maintenance of machines that incorporate electromagnetic coils. |
format | Online Article Text |
id | pubmed-7374401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73744012020-08-06 Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View Wang, Kai Guo, Haifeng Xu, Aidong Pecht, Michael Sensors (Basel) Article Electromagnetic coils are a key component in a variety of systems and are widely used in many industries. Because their insulation usually fails suddenly and can have catastrophic effects, degradation monitoring of coil insulation systems plays a vital role in avoiding unexpected machine shutdown. The existing insulation degradation monitoring methods are based on assessing the change of coil high-frequency electrical parameter response, whereas the effects of the insulation failure mechanisms are not considered, which leads to inconsistency between experimental results. Therefore, this paper investigates degradation monitoring of coil insulation systems under thermal loading conditions from a creep point of view. Inter-turn insulation creep deformation is identified as a quantitative index to manifest insulation degradation changes at the micro level. A method is developed to map coil high-frequency electrical monitoring parameters to inter-turn insulation creep deformation in order to bridge the gap between the micro-level and macro-level changes during the incipient insulation degradation process. Thermally accelerated tests are performed to validate the developed method. The mapping method helps to determine the physical meaning of coil electrical monitoring parameters and presents opportunities for predictive maintenance of machines that incorporate electromagnetic coils. MDPI 2020-07-01 /pmc/articles/PMC7374401/ /pubmed/32630343 http://dx.doi.org/10.3390/s20133696 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Kai Guo, Haifeng Xu, Aidong Pecht, Michael Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View |
title | Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View |
title_full | Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View |
title_fullStr | Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View |
title_full_unstemmed | Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View |
title_short | Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View |
title_sort | degradation monitoring of insulation systems used in low-voltage electromagnetic coils under thermal loading conditions from a creep point of view |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374401/ https://www.ncbi.nlm.nih.gov/pubmed/32630343 http://dx.doi.org/10.3390/s20133696 |
work_keys_str_mv | AT wangkai degradationmonitoringofinsulationsystemsusedinlowvoltageelectromagneticcoilsunderthermalloadingconditionsfromacreeppointofview AT guohaifeng degradationmonitoringofinsulationsystemsusedinlowvoltageelectromagneticcoilsunderthermalloadingconditionsfromacreeppointofview AT xuaidong degradationmonitoringofinsulationsystemsusedinlowvoltageelectromagneticcoilsunderthermalloadingconditionsfromacreeppointofview AT pechtmichael degradationmonitoringofinsulationsystemsusedinlowvoltageelectromagneticcoilsunderthermalloadingconditionsfromacreeppointofview |