Cargando…
Configuration-Invariant Sound Localization Technique Using Azimuth-Frequency Representation and Convolutional Neural Networks
Deep neural networks (DNNs) have achieved significant advancements in speech processing, and numerous types of DNN architectures have been proposed in the field of sound localization. When a DNN model is deployed for sound localization, a fixed input size is required. This is generally determined by...
Autores principales: | Chun, Chanjun, Jeon, Kwang Myung, Choi, Wooyeol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374402/ https://www.ncbi.nlm.nih.gov/pubmed/32635619 http://dx.doi.org/10.3390/s20133768 |
Ejemplares similares
-
Azimuthal sound localization in the chicken
por: Maldarelli, Gianmarco, et al.
Publicado: (2022) -
Improving the validity of neuroimaging decoding tests of invariant and configural neural representation
por: Soto, Fabian A., et al.
Publicado: (2023) -
The contribution of object identity and configuration to scene representation in convolutional neural networks
por: Tang, Kevin, et al.
Publicado: (2022) -
A unifying theory of ITD-based sound azimuth localization at the behavioral and neural levels
por: Benichoux, Victor, et al.
Publicado: (2013) -
Constructing Noise-Invariant Representations of Sound in the Auditory Pathway
por: Rabinowitz, Neil C., et al.
Publicado: (2013)