Cargando…
Learning Reward Function with Matching Network for Mapless Navigation
Deep reinforcement learning (DRL) has been successfully applied in mapless navigation. An important issue in DRL is to design a reward function for evaluating actions of agents. However, designing a robust and suitable reward function greatly depends on the designer’s experience and intuition. To ad...
Autores principales: | Zhang, Qichen, Zhu, Meiqiang, Zou, Liang, Li, Ming, Zhang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374413/ https://www.ncbi.nlm.nih.gov/pubmed/32629934 http://dx.doi.org/10.3390/s20133664 |
Ejemplares similares
-
Mapless Navigation Based on 2D LIDAR in Complex Unknown Environments
por: Yan, Kai, et al.
Publicado: (2020) -
A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework
por: Yin, Yan, et al.
Publicado: (2023) -
The Vector Matching Method in Geomagnetic Aiding Navigation
por: Song, Zhongguo, et al.
Publicado: (2016) -
Reward expectations direct learning and drive operant matching in Drosophila
por: Rajagopalan, Adithya E., et al.
Publicado: (2023) -
The dopamine circuit as a reward-taxis navigation system
por: Karin, Omer, et al.
Publicado: (2022)