Cargando…
Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality
High-throughput imaging technologies have been developing rapidly for agricultural plant phenotyping purposes. With most of the current crop plant image processing algorithms, the plant canopy pixels are segmented from the images, and the averaged spectrum across the whole canopy is calculated in or...
Autores principales: | Ma, Dongdong, Wang, Liangju, Zhang, Libo, Song, Zhihang, U. Rehman, Tanzeel, Jin, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374434/ https://www.ncbi.nlm.nih.gov/pubmed/32629882 http://dx.doi.org/10.3390/s20133659 |
Ejemplares similares
-
Elimination of Leaf Angle Impacts on Plant Reflectance Spectra Using Fusion of Hyperspectral Images and 3D Point Clouds
por: Zhang, Libo, et al.
Publicado: (2022) -
Precise Estimation of NDVI with a Simple NIR Sensitive RGB Camera and Machine Learning Methods for Corn Plants
por: Wang, Liangju, et al.
Publicado: (2020) -
LeafScope: A Portable High-Resolution Multispectral Imager for In Vivo Imaging Soybean Leaf
por: Wang, Liangju, et al.
Publicado: (2020) -
Improving High-Throughput Phenotyping Using Fusion of Close-Range Hyperspectral Camera and Low-Cost Depth Sensor
por: Huang, Peikui, et al.
Publicado: (2018) -
Hyperspectral-Based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables
por: Fan, Lingling, et al.
Publicado: (2019)