Cargando…
Open Set Audio Classification Using Autoencoders Trained on Few Data
Open-set recognition (OSR) is a challenging machine learning problem that appears when classifiers are faced with test instances from classes not seen during training. It can be summarized as the problem of correctly identifying instances from a known class (seen during training) while rejecting any...
Autores principales: | Naranjo-Alcazar, Javier, Perez-Castanos, Sergi, Zuccarello, Pedro, Antonacci, Fabio, Cobos, Maximo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374438/ https://www.ncbi.nlm.nih.gov/pubmed/32635378 http://dx.doi.org/10.3390/s20133741 |
Ejemplares similares
-
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Wei, Ruoqi, et al.
Publicado: (2021) -
Impact of autoencoder based compact representation on emotion detection from audio
por: Patel, Nivedita, et al.
Publicado: (2021) -
An Improved Stacked Autoencoder for Metabolomic Data Classification
por: Fan, Xiaojing, et al.
Publicado: (2021) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
Exploiting the Matching Information in the Support Set for Few Shot Event Classification
por: Lai, Viet Dac, et al.
Publicado: (2020)