Cargando…
Cost-Reference Particle Filter for Cognitive Radar Tracking Systems with Unknown Statistics
A novel robust particle filtering algorithm is proposed for updating both the waveform and noise parameter for tracking accuracy simultaneously and adaptively. The approach is a significant step for cognitive radar towards more robust tracking in random dynamic systems with unknown statistics. Meanw...
Autores principales: | Zhong, Lei, Li, Yong, Cheng, Wei, Zheng, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374445/ https://www.ncbi.nlm.nih.gov/pubmed/32630008 http://dx.doi.org/10.3390/s20133669 |
Ejemplares similares
-
Kalman filtering techniques for radar tracking
por: Ramachandra, K V
Publicado: (2000) -
An Intelligent Cost-Reference Particle Filter with Resampling of Multi-Population Cooperation
por: Zhang, Xinyu, et al.
Publicado: (2023) -
Tracking Multiple Targets from Multistatic Doppler Radar with Unknown Probability of Detection
por: Do, Cong-Thanh, et al.
Publicado: (2019) -
Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking
por: Tao, Jin, et al.
Publicado: (2022) -
Finite Impulse Response Filter-Based Track Formation for Preceding Vehicle Tracking Using Automotive Radars
por: Pak, Jung Min
Publicado: (2022)