Cargando…

Ethanol exposure increases mutation rate through error-prone polymerases

Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows do...

Descripción completa

Detalles Bibliográficos
Autores principales: Voordeckers, Karin, Colding, Camilla, Grasso, Lavinia, Pardo, Benjamin, Hoes, Lore, Kominek, Jacek, Gielens, Kim, Dekoster, Kaat, Gordon, Jonathan, Van der Zande, Elisa, Bircham, Peter, Swings, Toon, Michiels, Jan, Van Loo, Peter, Nuyts, Sandra, Pasero, Philippe, Lisby, Michael, Verstrepen, Kevin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374746/
https://www.ncbi.nlm.nih.gov/pubmed/32694532
http://dx.doi.org/10.1038/s41467-020-17447-3
_version_ 1783561755741388800
author Voordeckers, Karin
Colding, Camilla
Grasso, Lavinia
Pardo, Benjamin
Hoes, Lore
Kominek, Jacek
Gielens, Kim
Dekoster, Kaat
Gordon, Jonathan
Van der Zande, Elisa
Bircham, Peter
Swings, Toon
Michiels, Jan
Van Loo, Peter
Nuyts, Sandra
Pasero, Philippe
Lisby, Michael
Verstrepen, Kevin J.
author_facet Voordeckers, Karin
Colding, Camilla
Grasso, Lavinia
Pardo, Benjamin
Hoes, Lore
Kominek, Jacek
Gielens, Kim
Dekoster, Kaat
Gordon, Jonathan
Van der Zande, Elisa
Bircham, Peter
Swings, Toon
Michiels, Jan
Van Loo, Peter
Nuyts, Sandra
Pasero, Philippe
Lisby, Michael
Verstrepen, Kevin J.
author_sort Voordeckers, Karin
collection PubMed
description Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows down replication and affects localization of Mrc1, a conserved protein that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment of error-prone DNA polymerases to the replication fork. Interestingly, preventing this recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional replication forks lead to recruitment of error-prone polymerases. Apart from providing a general mechanistic framework for the mutagenic effect of ethanol, our findings may also provide a route to better understand and prevent ethanol-associated carcinogenesis in higher eukaryotes.
format Online
Article
Text
id pubmed-7374746
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-73747462020-07-24 Ethanol exposure increases mutation rate through error-prone polymerases Voordeckers, Karin Colding, Camilla Grasso, Lavinia Pardo, Benjamin Hoes, Lore Kominek, Jacek Gielens, Kim Dekoster, Kaat Gordon, Jonathan Van der Zande, Elisa Bircham, Peter Swings, Toon Michiels, Jan Van Loo, Peter Nuyts, Sandra Pasero, Philippe Lisby, Michael Verstrepen, Kevin J. Nat Commun Article Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows down replication and affects localization of Mrc1, a conserved protein that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment of error-prone DNA polymerases to the replication fork. Interestingly, preventing this recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional replication forks lead to recruitment of error-prone polymerases. Apart from providing a general mechanistic framework for the mutagenic effect of ethanol, our findings may also provide a route to better understand and prevent ethanol-associated carcinogenesis in higher eukaryotes. Nature Publishing Group UK 2020-07-21 /pmc/articles/PMC7374746/ /pubmed/32694532 http://dx.doi.org/10.1038/s41467-020-17447-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Voordeckers, Karin
Colding, Camilla
Grasso, Lavinia
Pardo, Benjamin
Hoes, Lore
Kominek, Jacek
Gielens, Kim
Dekoster, Kaat
Gordon, Jonathan
Van der Zande, Elisa
Bircham, Peter
Swings, Toon
Michiels, Jan
Van Loo, Peter
Nuyts, Sandra
Pasero, Philippe
Lisby, Michael
Verstrepen, Kevin J.
Ethanol exposure increases mutation rate through error-prone polymerases
title Ethanol exposure increases mutation rate through error-prone polymerases
title_full Ethanol exposure increases mutation rate through error-prone polymerases
title_fullStr Ethanol exposure increases mutation rate through error-prone polymerases
title_full_unstemmed Ethanol exposure increases mutation rate through error-prone polymerases
title_short Ethanol exposure increases mutation rate through error-prone polymerases
title_sort ethanol exposure increases mutation rate through error-prone polymerases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374746/
https://www.ncbi.nlm.nih.gov/pubmed/32694532
http://dx.doi.org/10.1038/s41467-020-17447-3
work_keys_str_mv AT voordeckerskarin ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT coldingcamilla ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT grassolavinia ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT pardobenjamin ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT hoeslore ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT kominekjacek ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT gielenskim ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT dekosterkaat ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT gordonjonathan ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT vanderzandeelisa ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT birchampeter ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT swingstoon ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT michielsjan ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT vanloopeter ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT nuytssandra ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT paserophilippe ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT lisbymichael ethanolexposureincreasesmutationratethrougherrorpronepolymerases
AT verstrepenkevinj ethanolexposureincreasesmutationratethrougherrorpronepolymerases