Cargando…

Across‐Fault Velocity Gradients and Slip Behavior of the San Andreas Fault Near Parkfield

A long‐lasting question in earthquake physics is why slip on faults occurs as creep or dynamic rupture. We compute passive measurements of the seismic P wave velocity gradient across the San Andreas Fault near Parkfield, where this transition of slip mode occurs at a scale of a few kilometers. Unbia...

Descripción completa

Detalles Bibliográficos
Autores principales: Piana Agostinetti, N., Giacomuzzi, G., Chiarabba, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374945/
https://www.ncbi.nlm.nih.gov/pubmed/32713971
http://dx.doi.org/10.1029/2019GL084480
Descripción
Sumario:A long‐lasting question in earthquake physics is why slip on faults occurs as creep or dynamic rupture. We compute passive measurements of the seismic P wave velocity gradient across the San Andreas Fault near Parkfield, where this transition of slip mode occurs at a scale of a few kilometers. Unbiased measurements are obtained through the application of a new Bayesian local earthquake tomographic code that avoids the imposition of any user‐defined, initial velocity‐contrast across the fault, or any damping scheme that may cause biased amplitude in retrieved seismic velocities. We observe that across‐fault velocity gradients correlate with the slip behavior of the fault. The P wave velocity contrast decays from 20% in the fault section that experience dynamic rupture to 4% in the creeping section, suggesting that rapid change of material properties and attitude to sustain supra‐hydrostatic fluid pressure are conditions for development of dynamic rupture. Low Vp and high Vp/Vs suggest that fault rheology at shallow depth is conversely controlled by low frictional strength material.