Cargando…
Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano
Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data f...
Autores principales: | Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., Brenguier, F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374946/ https://www.ncbi.nlm.nih.gov/pubmed/32713974 http://dx.doi.org/10.1029/2019GL085523 |
Ejemplares similares
-
Constraining Spatiotemporal Characteristics of Magma Migration at Piton De La Fournaise Volcano From Pre‐eruptive Seismicity
por: Duputel, Z., et al.
Publicado: (2019) -
Unusually high SO(2) emissions and plume height from Piton de la Fournaise volcano during the April 2020 eruption
por: Hayer, C., et al.
Publicado: (2023) -
Control of source fertility on the eruptive activity of Piton de la Fournaise volcano, La Réunion
por: Vlastélic, I., et al.
Publicado: (2018) -
Reappraisal of gap analysis for effusive crises at Piton de la Fournaise
por: Peltier, Aline, et al.
Publicado: (2022) -
22 years of satellite imagery reveal a major destabilization structure at Piton de la Fournaise
por: Dumont, Quentin, et al.
Publicado: (2022)