Cargando…

Dark control: The default mode network as a reinforcement learning agent

The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor...

Descripción completa

Detalles Bibliográficos
Autores principales: Dohmatob, Elvis, Dumas, Guillaume, Bzdok, Danilo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375062/
https://www.ncbi.nlm.nih.gov/pubmed/32500968
http://dx.doi.org/10.1002/hbm.25019
Descripción
Sumario:The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor of an evolutionarily adaptive role in envisioning experience to anticipate the future. In the present work, we propose a process model that tries to explain how the DMN may implement continuous evaluation and prediction of the environment to guide behavior. The main purpose of DMN activity, we argue, may be described by Markov decision processes that optimize action policies via value estimates through vicarious trial and error. Our formal perspective on DMN function naturally accommodates as special cases previous interpretations based on (a) predictive coding, (b) semantic associations, and (c) a sentinel role. Moreover, this process model for the neural optimization of complex behavior in the DMN offers parsimonious explanations for recent experimental findings in animals and humans.