Cargando…

A response‐locking protocol to boost sensitivity for fMRI‐based neurochronometry

The timeline of brain‐wide neural activity relative to a behavioral event is crucial when decoding the neural implementation of a cognitive process. Yet, fMRI assesses neural processes indirectly via delayed and regionally variable hemodynamics. This method‐inherent temporal distortion impacts the i...

Descripción completa

Detalles Bibliográficos
Autores principales: Viswanathan, Shivakumar, Abdollahi, Rouhollah O., Wang, Bin A., Grefkes, Christian, Fink, Gereon R., Daun, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375084/
https://www.ncbi.nlm.nih.gov/pubmed/32385973
http://dx.doi.org/10.1002/hbm.25026
Descripción
Sumario:The timeline of brain‐wide neural activity relative to a behavioral event is crucial when decoding the neural implementation of a cognitive process. Yet, fMRI assesses neural processes indirectly via delayed and regionally variable hemodynamics. This method‐inherent temporal distortion impacts the interpretation of behavior‐linked neural timing. Here we describe a novel behavioral protocol that aims at disentangling the BOLD dynamics of the pre‐ and post‐response periods in response time tasks. We tested this response‐locking protocol in a perceptual decision‐making (random dot) task. Increasing perceptual difficulty produced expected activity increases over a broad network involving the lateral/medial prefrontal cortex and the anterior insula. However, response‐locking revealed a previously unreported functional dissociation within this network. preSMA and anterior premotor cortex (prePMV) showed post‐response activity modulations while anterior insula and anterior cingulate cortex did not. Furthermore, post‐response BOLD activity at preSMA showed a modulation in timing but not amplitude while this pattern was reversed at prePMV. These timeline dissociations with response‐locking thus revealed three functionally distinct sub‐networks in what was seemingly one shared distributed network modulated by perceptual difficulty. These findings suggest that our novel response‐locked protocol could boost the timing‐related sensitivity of fMRI.