Cargando…
Towards a brain‐based predictome of mental illness
Neuroimaging‐based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for indivi...
Autores principales: | Rashid, Barnaly, Calhoun, Vince |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375108/ https://www.ncbi.nlm.nih.gov/pubmed/32374075 http://dx.doi.org/10.1002/hbm.25013 |
Ejemplares similares
-
Deep multimodal predictome for studying mental disorders
por: Rahaman, Md Abdur, et al.
Publicado: (2022) -
On the holobiont ‘predictome’ of immunocompetence in pigs
por: Calle-García, Joan, et al.
Publicado: (2023) -
Correction to “Deep multimodal predictome for studying mental disorders”
Publicado: (2023) -
Schizophrenia Shows Disrupted Links between Brain Volume and Dynamic Functional Connectivity
por: Abrol, Anees, et al.
Publicado: (2017) -
Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects
por: Rashid, Barnaly, et al.
Publicado: (2014)