Cargando…
Dissociated modulations of multivoxel activation patterns in the ventral and dorsal visual pathways by the temporal dynamics of stimuli
INTRODUCTION: Previous studies suggested temporal limitations of visual object identification in the ventral pathway. Moreover, multivoxel pattern analyses (MVPA) of fMRI activation have shown reliable encoding of various object categories including faces and tools in the ventral pathway. By contras...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375111/ https://www.ncbi.nlm.nih.gov/pubmed/32496013 http://dx.doi.org/10.1002/brb3.1673 |
Sumario: | INTRODUCTION: Previous studies suggested temporal limitations of visual object identification in the ventral pathway. Moreover, multivoxel pattern analyses (MVPA) of fMRI activation have shown reliable encoding of various object categories including faces and tools in the ventral pathway. By contrast, the dorsal pathway is involved in reaching a target and grasping a tool, and quicker in processing the temporal dynamics of stimulus change. However, little is known about how activation patterns in both pathways may change according to the temporal dynamics of stimulus change. METHODS: Here, we measured fMRI responses of two consecutive stimuli with varying interstimulus intervals (ISIs), and we compared how the two visual pathways respond to the dynamics of stimuli by using MVPA and information‐based searchlight mapping. RESULTS: We found that the temporal dynamics of stimuli modulate responses of the two visual pathways in opposite directions. Specifically, slower temporal dynamics (longer ISIs) led to greater activity and better MVPA results in the ventral pathway. However, faster temporal dynamics (shorter ISIs) led to greater activity and better MVPA results in the dorsal pathway. CONCLUSIONS: These results are the first to show how temporal dynamics of stimulus change modulated multivoxel fMRI activation pattern change. And such temporal dynamic response function in different ROIs along the two visual pathways may shed lights on understanding functional relationship and organization of these ROIs. |
---|