Cargando…
Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review
Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, alt...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375116/ https://www.ncbi.nlm.nih.gov/pubmed/32333624 http://dx.doi.org/10.1002/hbm.25010 |
_version_ | 1783561821676896256 |
---|---|
author | Heunis, Stephan Lamerichs, Rolf Zinger, Svitlana Caballero‐Gaudes, Cesar Jansen, Jacobus F. A. Aldenkamp, Bert Breeuwer, Marcel |
author_facet | Heunis, Stephan Lamerichs, Rolf Zinger, Svitlana Caballero‐Gaudes, Cesar Jansen, Jacobus F. A. Aldenkamp, Bert Breeuwer, Marcel |
author_sort | Heunis, Stephan |
collection | PubMed |
description | Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI‐NF studies. We found: (a) that less than a third of the studies reported implementing standard real‐time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI‐NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI‐NF studies: (a) report implementation of a set of standard real‐time fMRI denoising steps according to a proposed COBIDAS‐style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community‐informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open‐source rtfMRI‐NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality‐and‐denoising‐in‐rtfmri‐nf. |
format | Online Article Text |
id | pubmed-7375116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73751162020-07-22 Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review Heunis, Stephan Lamerichs, Rolf Zinger, Svitlana Caballero‐Gaudes, Cesar Jansen, Jacobus F. A. Aldenkamp, Bert Breeuwer, Marcel Hum Brain Mapp Review Articles Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI‐NF studies. We found: (a) that less than a third of the studies reported implementing standard real‐time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI‐NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI‐NF studies: (a) report implementation of a set of standard real‐time fMRI denoising steps according to a proposed COBIDAS‐style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community‐informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open‐source rtfMRI‐NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality‐and‐denoising‐in‐rtfmri‐nf. John Wiley & Sons, Inc. 2020-04-25 /pmc/articles/PMC7375116/ /pubmed/32333624 http://dx.doi.org/10.1002/hbm.25010 Text en © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Articles Heunis, Stephan Lamerichs, Rolf Zinger, Svitlana Caballero‐Gaudes, Cesar Jansen, Jacobus F. A. Aldenkamp, Bert Breeuwer, Marcel Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
title | Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
title_full | Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
title_fullStr | Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
title_full_unstemmed | Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
title_short | Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
title_sort | quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: a methods review |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375116/ https://www.ncbi.nlm.nih.gov/pubmed/32333624 http://dx.doi.org/10.1002/hbm.25010 |
work_keys_str_mv | AT heunisstephan qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview AT lamerichsrolf qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview AT zingersvitlana qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview AT caballerogaudescesar qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview AT jansenjacobusfa qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview AT aldenkampbert qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview AT breeuwermarcel qualityanddenoisinginrealtimefunctionalmagneticresonanceimagingneurofeedbackamethodsreview |