Cargando…
Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1
INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective tr...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375129/ https://www.ncbi.nlm.nih.gov/pubmed/32441492 http://dx.doi.org/10.1002/brb3.1655 |
_version_ | 1783561824505954304 |
---|---|
author | Xu, Yan Hu, Rong He, Duanqun Zhou, Guijuan Wu, Heng Xu, Chenlin He, Bing Wu, Lin Wang, Yilin Chang, Yunqian Ma, Rundong Xie, Ming Xiao, Zijian |
author_facet | Xu, Yan Hu, Rong He, Duanqun Zhou, Guijuan Wu, Heng Xu, Chenlin He, Bing Wu, Lin Wang, Yilin Chang, Yunqian Ma, Rundong Xie, Ming Xiao, Zijian |
author_sort | Xu, Yan |
collection | PubMed |
description | INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models. METHODS: In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aβ deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice. RESULTS: In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aβ deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed. CONCLUSION: Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress. |
format | Online Article Text |
id | pubmed-7375129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73751292020-07-22 Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 Xu, Yan Hu, Rong He, Duanqun Zhou, Guijuan Wu, Heng Xu, Chenlin He, Bing Wu, Lin Wang, Yilin Chang, Yunqian Ma, Rundong Xie, Ming Xiao, Zijian Brain Behav Original Research INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models. METHODS: In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aβ deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice. RESULTS: In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aβ deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed. CONCLUSION: Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress. John Wiley and Sons Inc. 2020-05-22 /pmc/articles/PMC7375129/ /pubmed/32441492 http://dx.doi.org/10.1002/brb3.1655 Text en © 2020 The Authors. Brain and Behavior published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Xu, Yan Hu, Rong He, Duanqun Zhou, Guijuan Wu, Heng Xu, Chenlin He, Bing Wu, Lin Wang, Yilin Chang, Yunqian Ma, Rundong Xie, Ming Xiao, Zijian Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 |
title | Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 |
title_full | Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 |
title_fullStr | Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 |
title_full_unstemmed | Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 |
title_short | Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up‐regulating SIRT1 |
title_sort | bisdemethoxycurcumin inhibits oxidative stress and antagonizes alzheimer's disease by up‐regulating sirt1 |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375129/ https://www.ncbi.nlm.nih.gov/pubmed/32441492 http://dx.doi.org/10.1002/brb3.1655 |
work_keys_str_mv | AT xuyan bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT hurong bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT heduanqun bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT zhouguijuan bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT wuheng bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT xuchenlin bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT hebing bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT wulin bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT wangyilin bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT changyunqian bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT marundong bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT xieming bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 AT xiaozijian bisdemethoxycurcumininhibitsoxidativestressandantagonizesalzheimersdiseasebyupregulatingsirt1 |