Cargando…
Analog Forecasting of Extreme‐Causing Weather Patterns Using Deep Learning
Numerical weather prediction models require ever‐growing computing time and resources but, still, have sometimes difficulties with predicting weather extremes. We introduce a data‐driven framework that is based on analog forecasting (prediction using past similar patterns) and employs a novel deep l...
Autores principales: | Chattopadhyay, Ashesh, Nabizadeh, Ebrahim, Hassanzadeh, Pedram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375135/ https://www.ncbi.nlm.nih.gov/pubmed/32714491 http://dx.doi.org/10.1029/2019MS001958 |
Ejemplares similares
-
Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data
por: Chattopadhyay, Ashesh, et al.
Publicado: (2020) -
Extreme weather forecasting : state of the science, uncertainty and impacts /
Publicado: (2023) -
Explaining the physics of transfer learning in data-driven turbulence modeling
por: Subel, Adam, et al.
Publicado: (2023) -
Weather and population based forecasting of novel COVID-19 using deep learning approaches
por: Ronald Doni, A., et al.
Publicado: (2021) -
Weather forecasting /
por: Hodgson, Michael
Publicado: (1999)