Cargando…

A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors

Compressible solid‐state supercapacitors are emerging as promising power sources for next‐generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capaciti...

Descripción completa

Detalles Bibliográficos
Autores principales: Nan, Jingya, Zhang, Gaitong, Zhu, Tianyu, Wang, Zhongkai, Wang, Lijun, Wang, Hongsheng, Chu, Fuxiang, Wang, Chunpeng, Tang, Chuanbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375230/
https://www.ncbi.nlm.nih.gov/pubmed/32714764
http://dx.doi.org/10.1002/advs.202000587
_version_ 1783561840179019776
author Nan, Jingya
Zhang, Gaitong
Zhu, Tianyu
Wang, Zhongkai
Wang, Lijun
Wang, Hongsheng
Chu, Fuxiang
Wang, Chunpeng
Tang, Chuanbing
author_facet Nan, Jingya
Zhang, Gaitong
Zhu, Tianyu
Wang, Zhongkai
Wang, Lijun
Wang, Hongsheng
Chu, Fuxiang
Wang, Chunpeng
Tang, Chuanbing
author_sort Nan, Jingya
collection PubMed
description Compressible solid‐state supercapacitors are emerging as promising power sources for next‐generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capacitive stability of these supercapacitor devices. Here, a lithium ion‐conducting hydrogel electrolyte by integrating natural protein nanoparticles into polyacrylamide network is reported. Due to the synergistic effect of natural protein nanoparticles and polyacrylamide chains, the obtained hydrogel shows remarkable elasticity, high compressibility, and fatigue resistance properties. More significantly, the supercapacitor device based on this hydrogel electrolyte exhibits reversible compressibility under multiple cyclic compressions, working well under 80% strain for 1000 compression cycles without sacrificing its capacitive performance. This work offers a promising approach for compressible supercapacitors.
format Online
Article
Text
id pubmed-7375230
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73752302020-07-23 A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors Nan, Jingya Zhang, Gaitong Zhu, Tianyu Wang, Zhongkai Wang, Lijun Wang, Hongsheng Chu, Fuxiang Wang, Chunpeng Tang, Chuanbing Adv Sci (Weinh) Full Papers Compressible solid‐state supercapacitors are emerging as promising power sources for next‐generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capacitive stability of these supercapacitor devices. Here, a lithium ion‐conducting hydrogel electrolyte by integrating natural protein nanoparticles into polyacrylamide network is reported. Due to the synergistic effect of natural protein nanoparticles and polyacrylamide chains, the obtained hydrogel shows remarkable elasticity, high compressibility, and fatigue resistance properties. More significantly, the supercapacitor device based on this hydrogel electrolyte exhibits reversible compressibility under multiple cyclic compressions, working well under 80% strain for 1000 compression cycles without sacrificing its capacitive performance. This work offers a promising approach for compressible supercapacitors. John Wiley and Sons Inc. 2020-06-05 /pmc/articles/PMC7375230/ /pubmed/32714764 http://dx.doi.org/10.1002/advs.202000587 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Nan, Jingya
Zhang, Gaitong
Zhu, Tianyu
Wang, Zhongkai
Wang, Lijun
Wang, Hongsheng
Chu, Fuxiang
Wang, Chunpeng
Tang, Chuanbing
A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors
title A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors
title_full A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors
title_fullStr A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors
title_full_unstemmed A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors
title_short A Highly Elastic and Fatigue‐Resistant Natural Protein‐Reinforced Hydrogel Electrolyte for Reversible‐Compressible Quasi‐Solid‐State Supercapacitors
title_sort highly elastic and fatigue‐resistant natural protein‐reinforced hydrogel electrolyte for reversible‐compressible quasi‐solid‐state supercapacitors
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375230/
https://www.ncbi.nlm.nih.gov/pubmed/32714764
http://dx.doi.org/10.1002/advs.202000587
work_keys_str_mv AT nanjingya ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT zhanggaitong ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT zhutianyu ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wangzhongkai ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wanglijun ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wanghongsheng ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT chufuxiang ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wangchunpeng ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT tangchuanbing ahighlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT nanjingya highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT zhanggaitong highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT zhutianyu highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wangzhongkai highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wanglijun highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wanghongsheng highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT chufuxiang highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT wangchunpeng highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors
AT tangchuanbing highlyelasticandfatigueresistantnaturalproteinreinforcedhydrogelelectrolyteforreversiblecompressiblequasisolidstatesupercapacitors